arp время жизни записи

Arp время жизни записи

arp время жизни записи. Смотреть фото arp время жизни записи. Смотреть картинку arp время жизни записи. Картинка про arp время жизни записи. Фото arp время жизни записи

Как посмотреть arp таблицу в Windows

Важной особенностью интерфейса Ethernet является то, что каждая интерфейсная карта имеет свой уникальный адрес. Каждому производителю карт выделен свой пул адресов в рамках которого он может выпускать карты. Согласно протоколу Ethernet, каждый интерфейс имеет 6-ти байтовый адрес. Адрес записывается в виде шести групп шестнадцатеричных цифр по две в каждой (шестнадцатеричная записи байта). Первые три байта называются префиксом, и именно они закреплены за производителем. Каждый префикс определяет 224 различных комбинаций, что равно почти 17-ти млн. адресам.

В сетях нет однозначного соответствия между физическим адресом сетевого интерфейса (MAC адресом сетевой карты) и его IP-адресом. Поиск по IP-адресу соответствующего Ethernet-адреса производится протоколом ARP, функционирующим на уровне доступа к среде передачи. Протокол поддерживает в оперативной памяти динамическую arp-таблицу в целях кэширования полученной информации. Открываем в Windows командную строку.

Как посмотреть arp таблицу

Где вы слева видите ip адрес, а правее видите Физический адрес (mac адрес). Это и есть arp таблица windows.

arp время жизни записи. Смотреть фото arp время жизни записи. Смотреть картинку arp время жизни записи. Картинка про arp время жизни записи. Фото arp время жизни записи

Как посмотреть arp таблицу в Windows-2

очистка arp таблицы

Делается с помощью команды

И видим,произошла очистка arp таблицы

arp время жизни записи. Смотреть фото arp время жизни записи. Смотреть картинку arp время жизни записи. Картинка про arp время жизни записи. Фото arp время жизни записи

Как посмотреть arp таблицу в Windows-3

Как добавить свою запись в arp таблицу

Делается это с помощью команды

Увеличиваем время жизни arp записи Windows 7 по 10

Давайте рассмотрим на примере Windows 8.1 как можно увеличить время жизни arp записей, для чего это может быть нужно, ну, чтобы разгрузить сеть лишним трафиком, если у вас в сети мало, что меняется. Делается это все через реестр Windows

Нажимаем Win+R и вводим regedit и переходим в ветку

Тут вам для изменения периода хранения данных в кэше ARP, нужно создать Параметр DWORD, если у вас разрядность системы 32, то создаем 32, если 64, то такой же.

arp время жизни записи. Смотреть фото arp время жизни записи. Смотреть картинку arp время жизни записи. Картинка про arp время жизни записи. Фото arp время жизни записи

Задаем имя ArpCacheLife и ставим значение в секундах, после чего нужно перезагрузиться и у вас поменяется время жизни arp записи.

arp время жизни записи. Смотреть фото arp время жизни записи. Смотреть картинку arp время жизни записи. Картинка про arp время жизни записи. Фото arp время жизни записи

Вот полная справка команды arp

Отображение и изменение таблиц преобразования IP-адресов в физические,
используемые протоколом разрешения адресов (ARP).

Источник

ИТ База знаний

Полезно

— Онлайн генератор устойчивых паролей

— Онлайн калькулятор подсетей

— Руководство администратора FreePBX на русском языке

— Руководство администратора Cisco UCM/CME на русском языке

— Руководство администратора по Linux/Unix

Навигация

Серверные решения

Телефония

FreePBX и Asterisk

Настройка программных телефонов

Корпоративные сети

Протоколы и стандарты

В семиуровневой модели OSI на различных уровнях имеются разные типы адресов. На канальном это MAC-адрес, а на сетевом это IP-адрес. И для того чтобы установить соответствие между этими адресами используется протокол Address Resolution Protocol – ARP. Именно о нем мы поговорим в этой статье.

Полный курс по Сетевым Технологиям

В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer

arp время жизни записи. Смотреть фото arp время жизни записи. Смотреть картинку arp время жизни записи. Картинка про arp время жизни записи. Фото arp время жизни записи

Адресация

Адреса 2-го уровня используются для локальных передач между устройствами, которые связаны напрямую. Адреса 3-го уровня используются устройств, которые подключены косвенно в межсетевой среде. Каждая сеть использует адресацию для идентификации и группировки устройств, чтобы передачи прошла успешно. Протокол Ethernet использует MAC-адреса, которые привязаны к сетевой карте.

Чтобы устройства могли общаться друг с другом, когда они не находятся в одной сети MAC-адрес должен быть сопоставлен с IP-адресом. Для этого сопоставления используются следующие протоколы:

Address Resolution Protocol

Устройству 3го уровня необходим протокол ARP для сопоставления IP-адреса с MAC-адресом, для отправки IP пакетов. Прежде чем устройство отправит данные на другое устройство, оно заглянет в свой кеш ARP где хранятся все сопоставления IP и MAC адресов, чтобы узнать, есть ли MAC-адрес и соответствующий IP-адрес для устройства, которому идет отправка. Если записи нет, то устройство-источник отправляет широковещательное сообщение каждому устройству в сети чтобы узнать устройству с каким MAC-адресом принадлежит указанный IP-адрес. Все устройства сравнивают IP-адрес с их собственным и только устройство с соответствующим IP-адресом отвечает на отправляющее устройство пакетом, содержащим свой MAC-адрес. Исходное устройство добавляет MAC-адрес устройства назначения в свою таблицу ARP для дальнейшего использования, создает пакет с новыми данными и переходит к передаче.

Проще всего работу ARP иллюстрирует эта картинка:

arp время жизни записи. Смотреть фото arp время жизни записи. Смотреть картинку arp время жизни записи. Картинка про arp время жизни записи. Фото arp время жизни записи

Первый компьютер отправляет broadcast сообщение всем в широковещательном домене с запросом “У кого IP-адрес 10.10.10.2? Если у тебя, то сообщи свой MAC-адрес” и на что компьютер с этим адресом сообщает ему свой MAC.

Когда устройство назначения находится в удаленной сети, устройства третьего уровня одно за другим, повторяют тот же процесс, за исключением того, что отправляющее устройство отправляет ARP-запрос для MAC-адреса шлюза по умолчанию. После того, как адрес будет получен и шлюз по умолчанию получит пакет, шлюз по умолчанию передает IP-адрес получателя по связанным с ним сетям. Устройство уровня 3 в сети где находится устройство назначения использует ARP для получения MAC-адреса устройства назначения и доставки пакета.

Кэширование ARP

Поскольку сопоставление IP-адресов с MAC-адресами происходит на каждом хопе в сети для каждой дейтаграммы, отправленной в другую сеть, производительность сети может быть снижена. Чтобы свести к минимуму трансляции и ограничить расточительное использование сетевых ресурсов, было реализовано кэширование протокола ARP.

Статические и динамические записи в кеше ARP

Существуют записи статического ARP-кэша и записи динамического ARP-кэша. Статические записи настраиваются вручную и сохраняются в таблице кеша на постоянной основе. Статические записи лучше всего подходят для устройств, которым необходимо регулярно общаться с другими устройствами, обычно в одной и той же сети. Динамические записи хранятся в течение определенного периода времени, а затем удаляются.

Для статической маршрутизации администратор должен вручную вводить IP-адреса, маски подсети, шлюзы и соответствующие MAC-адреса для каждого интерфейса каждого устройства в таблицу. Статическая маршрутизация обеспечивает больший контроль, но для поддержания таблицы требуется больше работы. Таблица должна обновляться каждый раз, когда маршруты добавляются или изменяются.

Динамическая маршрутизация использует протоколы, которые позволяют устройствам в сети обмениваться информацией таблицы маршрутизации друг с другом. Таблица строится и изменяется автоматически. Никакие административные задачи не требуются, если не добавлен лимит времени, поэтому динамическая маршрутизация более эффективна, чем статическая маршрутизация.

Устройства, которые не используют ARP

Когда сеть делится на два сегмента, мост соединяет сегменты и фильтрует трафик на каждый сегмент на основе MAC-адресов. Мост создает свою собственную таблицу адресов, которая использует только MAC-адреса, в отличие от маршрутизатора, который имеет кэш ARP адресов, который содержит как IP-адреса, так и соответствующие MAC-адреса.

Inverse ARP

Inverse ARP (InARP), который по умолчанию включен в сетях ATM, строит запись карты ATM и необходим для отправки одноадресных пакетов на сервер (или агент ретрансляции) на другом конце соединения. Обратный ARP поддерживается только для типа инкапсуляции aal5snap. Для многоточечных интерфейсов IP-адрес может быть получен с использованием других типов инкапсуляции, поскольку используются широковещательные пакеты.

Reverse ARP
Proxy ARP

Прокси-ARP был реализован для включения устройств, которые разделены на физические сегменты сети, подключенные маршрутизатором в той же IP-сети или подсети для сопоставления адресов IP и MAC. Когда устройства не находятся в одной сети канала передачи данных (2-го уровня), но находятся в одной и той же IP-сети, они пытаются передавать данные друг другу, как если бы они находились в локальной сети. Однако маршрутизатор, который отделяет устройства, не будет отправлять широковещательное сообщение, поскольку маршрутизаторы не передают широковещательные сообщения аппаратного уровня. Поэтому адреса не могут быть сопоставлены.

Прокси-сервер ARP включен по умолчанию, поэтому «прокси-маршрутизатор», который находится между локальными сетями, отвечает своим MAC-адресом, как если бы это был маршрутизатор, к которому адресована широковещательная передача. Когда отправляющее устройство получает MAC-адрес прокси-маршрутизатора, он отправляет данные на прокси-маршрутизатор, который по очереди отправляет данные на указанное устройство.

Proxy ARP вызывается следующими условиями:

Когда proxy ARP отключен, устройство отвечает на запросы ARP, полученные на его интерфейсе, только если IP-адрес назначения совпадает с его IP-адресом или если целевой IP-адрес в ARP-запросе имеет статически настроенный псевдоним ARP.

Serial Line Address Resolution Protocol

Serial Line ARP (SLARP) используется для последовательных интерфейсов, которые используют инкапсуляцию High Link Level Link Control (HDLC). В дополнение к TFTP-серверу может потребоваться сервер SLARP, промежуточное (промежуточное) устройство и другое устройство, предоставляющее услугу SLARP. Если интерфейс напрямую не подключен к серверу, промежуточное устройство требуется для пересылки запросов сопоставления адреса на сервер. В противном случае требуется напрямую подключенное устройство с сервисом SLARP.

Онлайн курс по Кибербезопасности

Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии

Источник

Семейка протокола ARP

Многие думают, что если протокол мелкий и незаметный, то про него не надо ничего знать. Нетрудно догадаться, что это не так, и именно детальное знание подобных низкоуровневых и “простых” технологий является тем, что отличает профессионала от гуглоиксперта или фанатика, верующего, что в его любимой ОС всё работает “само по себе и априори идеально”.

Чуть-чуть поговорим о протоколах семейства ARP – обычно они не изучаются, и лишь поверхностно проводится обзор протокола ARP, на уровне рамочного понимания функционала – ну, а мы посмотрим, какие ещё варианты бывают.

Семейка протоколов ARP

Как работает протокол ARP

Протокол Address Resolution Protocol (ARP) используется для простой задачи – выяснить по известному адресу сетевого уровня (IPv4) неизвестный адрес канального уровня (обычно это MAC-адрес 802.3, но возможны и другие варианты).

Данные ARP вкладываются в протокол канального уровня (что напрямую, что через SNAP-заголовок) и являются, если рассуждать по логике “уровень протокола определяется по глубине вложения”, уже не протоколом канального уровня, а вот по функционалу ARP остаётся протоколом канального уровня, т.к. работает в пределах домена широковещания. Это я к тому, что модель OSI надо знать не хорошо, а очень хорошо, и различать два варианта определения “на каком уровне работает данный протокол”.

Например протокол RIPv2 занимается передачей маршрутной информации. Данные этого протокола вкладываются внутрь UDP, и по “глубине вложения” RIP будет “внутри транспортного уровня”. Только вот решать задачу он будет сетевого уровня – маршрутизацию. А допустим его коллега OSPF будет для передачи своих данных использовать не UDP или какой-либо другой протокол транспортного уровня, а напрямую вкладывать свои данные в IP-датаграммы, имея свой личный код вложения. Но при этом заниматься опять-таки будет задачей сетевого уровня – маршрутизации.

Так что будьте внимательны в терминологии – и “протокол выполняет задачи уровня N модели OSI” – это одно, а “протокол технически реализуется как вложение уровня N модели OSI” – другое.

Задачи, стоящие перед протоколом, достаточно прозрачны. Как он будет настраиваться?

Базовые настройки и операции с ARP на Windows-системах

Почистить локальный кэш ARP или удалить отдельную запись

Добавить статическую ARP-запись

Детально посмотреть кэш

Будут видны все типы записей – и static, и dynamic, и invalid. Сам вывод будет разбит по критерию привязки записей к интерфейсам – в начале каждого раздела будет выводиться primary IP интерфейса, а потом его внутренний идентификатор (Вы можете посмотреть табличку интерфейсов и их ID командой netsh int ipv4 sh int).

Есть и более современный вариант отображения кэша:netsh interface ipv4 show nei. В этой команде вывод также разбит по интерфейсам (правда, пишутся их человеческие названия, а не primary IP), статические и системные записи будут называться Permanent, обычные – Reachable (если доступны), Unreacheable (если нет) и Stale (если запись устарела).

Базовые операции с ARP на оборудовании Cisco

Как добавить статическую запись

(config)#arp ip-адрес или “vrf имя-vrf” mac-адрес тип-вложения тип-интерфейса

Из интересного тут разве что тип вложения – можно указать, какой именно вариант вложения (из реально возможных сейчас – ARPA или SNAP) будет у записи. Параметр “Тип интерфейса” можно не указывать.

Настроить включение-выключение ARP и его тип

(config-if)#arp arpa или frame-relay или snap

Как понятно, обычно тип ARP будет ARPA и в модификации нуждаться тоже особо не будет. Внимание – типы не являются взаимоисключающими – т.е. можно сделать и arp arpa и arp snap, и это лишь покажет, что на данном интерфейсе надо обрабатывать и тот и тот варианты.

Настроить время нахождения записи в ARP-кэше

(config-if)#arp timeout секунды

Настройка идёт на интерфейсе, т.к. данный тайм-аут будет только у записей в ARP-кэше, сделанных через этот интерфейс.

Очистить кэш ARP

#clear arp-cache

#clear arp-cache ip-адрес

Все записи, привязанные к конкретному интерфейсу:

#clear arp-cache интерфейс

Настроить работу с incomplete ARP records

Данные настройки будут нужны, чтобы задать поведение системы в случае “Я точно знаю, что есть сосед с таким IP-адресом, но у меня нет его MAC-адреса”.

Вы можете задать общее число таких адресов, находящихся “в процессе поиска”, а также количество попыток

(config)#ip arp incomplete enable

(config)#ip arp incomplete entries число

(config)#ip arp incomplete retry число

Базовый тюнинг ARP – тайм-ауты и кэш

ARP и QoS

ARP и NLB

Чтобы ARP дружил с NLB, он должен обрабатывать ситуацию, когда придёт ARP-запрос с не-юникастового адреса. То есть, смотрите ситуацию. Допустим, есть NLB, который работает в мультикастовом режиме. Два хоста, соответственно, прикидываются одним IP-адресом, отвечая на ARP-запросы про этот адрес общим мультикастовым MAC’ом, и потом договариваясь друг меж другом, что делать с пришедшим трафиком. Вот чтобы эта схема работала, надо, чтобы когда этот “общий виртуальный узел”, который обладает виртуальным IP и мультикастовым MAC, решил узнать через ARP чей-то MAC, ему вообще ответили. Потому что есть тонкость – у мультикастового MAC есть характерный вид, по которому понятно, что он мультикастовый. А не-юникастовые source MAC в общем-то не являются нормальной ситуацией и нуждаются в особой обработке. Соответственно, для этого надо явно включить обработку ситуации “к нам пришёл ARP-запрос от товарища, у которого обратный MAC-адрес не-юникастовый”. Делается это путём установки параметра:

в единицу. Если она будет в нуле – в ряде ситуаций поимеете проблемы с NLB.

ARP и SNAP

По умолчанию, ARP вкладывается в 802.3 кадр простым, Ethernet II способом. Это можно поменять в случае, если необходима поддержка SNAP-механизма, который, как известно, нужен для мультиплексирования потоков данных на канальном уровне. Напомню, что по RFC 1042 данные IP и ARP всегда передаются поверх 802.x сетей используя связку LLC+SNAP, за исключением обычного Ethernet (802.3), где они вкладываются напрямую (см. RFC 894). Примечание: Если не известно, то надо задуматься об изучении базовых курсов по сетевым технологиям, потому что детальное рассмотрение “что такое SNAP, зачем, почему, когда, с кем” не входит в спектр задач по изучению ARP.

Для этой задачи есть ключ:

По умолчанию он в нуле, установив в единицу Вы получите ситуацию, что ARP-запросы будут вкладываться в SNAP (притом в LLC+SNAP, что увеличит суммарный размер кадра на 3+5=8 байт).

ARP и NUD

NUD – это Neighbor Unreachability Detection. По умолчанию включается на интерфейсах, которые смотрят в broadcast-среды, и выключается на других. Помогает узнать о том, что сосед (что обычный, что шлюз) перешёл в нефункциональное состояние до времени, пока его запись в ARP-кэше стала Stale. Механизм полезный, поэтому его рекомендуется включать в явном виде. Делается это командой:

netsh int ipv4 set int имя интерфейса nud=enabled

ARP и DAD

DAD – это Duplicate Address Detection. То самое, что не даёт взять себе адрес, который уже есть у кого-то. Проводится путём отправки Gratuious ARP, про который чуть ниже. Тюнингуется достаточно просто, двумя параметрами:

netsh int ipv4 set int имя интерфейса retransmittime=миллисекунды

netsh int ipv4 set int имя интерфейса dadtransmits=попытки По умолчанию retransmittime – т.е. время между попытками обнаружить соседа, который уже занял адрес – 1 секунда, количество попыток dadtransmits – 3. Можете сократить их, если уверены, что все соседи отвечают достаточно быстро, это уменьшит время инициализации интерфейса – система не будет ждать “вдруг кто проснётся и скажет, что адрес уже занят”.

ARP и WOL

Протокол RARP

Примечание: Если код вложения будет от RARP, а коды – 1 или 2 (т.е. как у обычного ARP), то RARP-сервер отдаст данный пакет на обработку ARP-стеку.

Вообще, RARP сейчас практически не используется, но если хотите почитать – есть RFC 903.

Примечание: А если хотите почитать, и чтобы накрыло – почитайте про Dynamic RARP, это RFC 1931.

Реализация RARP-сервера в Windows

Реализация RARP-сервера на оборудовании Cisco

Она есть. Конфигурируется в несколько этапов. По порядку:

Шаг первый: Добавляем запись для потенциального RARP-клиента (т.е. того, кто хочет получить IP-адрес). В глобальной конфигурации:

(config)#arp ip-адрес mac-адрес-клиента arpa

Шаг второй: Разрешаем на интерфейсе, в качестве параметра – тот адрес на интерфейсе, от которого отправляем RARP-ответы.

(config-if)#ip rarp-server ip-адрес

Протокол InARP (Inverse ARP)

InARP – специальная модификация ARP для не-broadcast сетей (например, Frame Relay или ATM). Суть проста – в сетях, где нет широковещания, обычный ARP работать не сможет, а задачи, которые им решаются, никуда не пропадают. Соответственно, нужна схема работы. Она будет достаточно интересна и проста. Узел, который поддерживает InARP, будет самостоятельно с указанной периодичностью отправлять в субинтерфейсы, поддерживающие InARP (например, в FR’овские), InARP-сообщения, в которых будет указано что-то вида “привет, я от узла с сетевым адресом таким-то”. Соответственно, принимающая сторона, получая такое сообщение из-под субинтерфейса с DLCI=abc, будет записывать у себя в таблицу – “За DLCI abc живёт товарищ с IP xyz“. В общем-то и всё.

Другие отличия будут состоять в использовании других кодов операций – 8 для запроса InARP, 9 для ответа. Ну и в механизме вложения – понятное дело, в Q.922 вкладываться – это не в 802.3

Протокол UnARP

Предлагался в RFC 1868. Суть проста – сам формат пакета ARP не менялся, добавлялся лишь новый тип сообщения – сообщение вида “Я ушёл из сети”. Т.е. задачей дополнения UNARP являлось то, что узлы, которые отключаются, могут послать сообщение “Стирайте меня все из ARP-кэшей”, чтобы остальные не ждали время окончания кэширования записей. К сожалению, не поддерживается (основная причина – небезопасен, т.к. такое сообщение легко подделать).

Протокол SLARP (Serial Line ARP)

Специальный субпротокол, работающий внутри цисковского варианта HDLC (который обычно cHDLC). Используемый код вложения – 0x8035. Протокол простой, но интересный тем, что может делать две штуки – проверять состояние канала, периодически передавая кадры, и назначать IPv4-адреса в случае, если с одной стороны serial link адрес IPv4 есть, а с другой – нет. Адрес назначается по логике “Если у меня последний бит адреса 1, предложить такой же, но с нулём, и наоборот”. Маска предлагается такая же, как у себя.

Протокол DirectedARP

Протокол описан в RFC 1433. Сейчас как отдельный протокол не используется, хотя многие мысли, высказанные в этом RFC, достаточно дельные и повлияли, например, на формирование современного IPv6.

Безопасность ARP

ip arp entry learn количество

Есть, в общем-то, множество доп.механизмов безопасности ARP – тот же DAI или ARP ACL, про которые, возможно, я тоже допишу сюда.

Механизм Proxy ARP

Суть механизма Proxy ARP, детально обозначенного в RFC 1027, проста – дать возможность узлу, который в силу каких-то причин (например, у него не указан шлюз по умолчанию) не может понять, куда маршрутизировать трафик для других сетей, всё же сделать это. Притом сделать просто – используя то, что в сегменте с этим узлом присутствует добрый узел, на котором включен Proxy ARP, и который, увидев что узел пытается через ARP-запрос найти получателя трафика, “прикинется” этим получателем и ответит на запрос.

Т.е. вот есть маршрутизатор, на котором включен Proxy ARP. Он получает ARP-запрос на разрешение адреса узла, который находится в другом сегменте относительно спрашивающего и помогает – просто отвечает ему от имени этого узла. Соответственно, этот роутер и будет передавать трафик между данными узлами, а отправитель будет думать, что отправляет трафик напрямую.

Данный механизм включен “по умолчанию” на большинстве систем и нуждается в отключении – т.е. описанная ситуация, в общем-то, по производственной необходимости возникает довольно-таки редко.

Пример: Например, у хоста A адрес 10.1.1.1/24, а у хоста B – 10.1.1.2/16. Технологически они в разных сетях, и между ними даже есть роутер – у него в сторону хоста A смотрит интерфейс 10.1.1.254/24, в сторону хоста B – 10.1.255.254/16. Но вот проблема в том, что хост A не понимает, что хост B – в другой сети, а думает, что B – его сосед. И пытается найти его, отправляя ARP-запрос. Вот в этом случае если роутер будет поддерживать Proxy ARP, то всё будет хорошо – связь между A и B будет.

Как включить Proxy ARP на оборудовании Cisco

Зайдите на нужный интерфейс и введите там команду:

(config-if)#ip proxy-arp

Выключить глобально – (config)#ip arp proxy disable.

Как включить Proxy ARP в Windows

В случае, когда у Вас используется RRaS, proxy ARP работает автоматически.

Что такое и как работает Gratuitous ARP

Это страшное слово переводится как “самопроизвольный” ARP. Суть события в следующем. Любой узел, который инициирует новый интерфейс, на котором есть поддержка ARP, должен при завершении процесса конфигурирования IP-адреса (статически ли, по DHCP, через APIPA’у – без разницы) уведомить соседей о том, что он появился. Делается это при помощи отправки одиночного ARP Reply, в котором указывается, что логично, связка “мой MAC – мой новый IP”. Т.е. выглядит этот ARP-ответ несколько странно с точки зрения классической схемы работы ARP – узел рассылает на броадкастовый MAC и свой IP информацию о своём настоящем MAC и своём же IP. Т.е. совпадают SRC IP и DST IP.

Примечание: По сути, этот механизм – это “форсированное” обновление ARP-кэша соседей новой информацией – “теперь я по этому MAC-адресу”. Заодно, именно благодаря этому механизму, происходит обнаружение дублирующихся IP-адресов – тот, кто пытается присвоить себе IP-адрес, рассылая это уведомление “засветится”.

Но, в общем-то, мы и договорились, что это – исключительная и разовая ситуация. Казалось бы, в чём проблема-то?

Проблема в том, что когда такое происходит на сервере удалённого доступа, к которому подключено несколько клиентов (более 1, по сути), то этот сервер при подключении каждого своего клиента получает от него данный стартовый запрос ARP и ретранслирует запрос далее, выступая, по сути, прокси. В результате, допустим, порт коммутатора, в который включен этот сервер, впадает в тягостные размышления о здоровье сервера, который постоянно сообщает всей сети о том, что за его MAC-адресом интерфейса (того, который воткнут в коммутатор) очень много IP-адресов, и все они разные. И каждый раз, когда клиент будет подключаться (например, VPN-канал переподключит, или другим способом вызовет переход через NCP-фазу PPP), такой ARP-ответ будет создаваться и отправляться серверу, а тот будет отдавать его дальше – чтобы уведомить сеть, что трафик на такой-то IP-адрес надо отправлять на его, сервера, MAC, а дальше он уж сам разберется.

Соответственно, в ряде ситуаций (например, много клиентов, краткие сессии) такой механизм надо отключать. Зачастую проще привязать статически целую пачку ARP-соответствий (например, когда на сервере удалённого доступа выделен пул в 20 адресов, и абоненты подключаются, делают какую-то краткую операцию и отключаются), чем постоянно форвардить в сеть эти ARP Reply.

Примечание: На самом деле, делать это надо с умом, как и всё остальное. Есть ситуации, когда gratuitous ARP является штатным и нужным. Например, у Вас сделан HSRP-балансировщик. Активный узел упал – второй становится активным. И в этот момент он тоже “просто так, внезапно” отправит gratuitous ARP – чтобы сразу уведомить всю сеть, что теперь у виртуального IP новый MAC, а не ждать, пока у всех узлов кончится тайм-аут кэша.

Как настроить Gratuitous ARP на оборудовании Cisco

router(config)#ip gratuitous-arps

Если добавить в конце команды слово non-local, то будет обрабатываться вышеописанная ситуация с PPP.

Отключить приём всех gratuitous ARP’ов:

router(config)#ip arp gratuitous none

Включить приём только gratuitous ARP’ов, source которых из connected-сетей:

router(config)#ip arp gratuitous local

Как настроить Gratuitous ARP на Windows Server

Для указанного сценария с RRaS – никак. Ваш RRaS-сервер не будет передавать стартовый ARP-запрос, полученый от PPP-клиента, в другие сети, поэтому ситуация, описанная выше, просто не возникнет.

Управлять же Gratuitous ARP со стороны узла вполне можно. Для этого есть ключ реестра:

HKLM\System\CurrentControlSet\Services\TcpIp\Parameters

а в нём – параметр ArpRetryCount типа DWORD32. Если поставить этот параметр в нуль, то механизм будет выключен. По умолчанию Windows-хосты делают Gratuitous ARP три раза – сразу после инициализации адреса, потом через 1/2 секунды, потом через ещё 1/10 секунды. Можете поставить единицу, если уверены в качестве работы сети и её не-критичной загруженности на момент выхода ARP Reply – “сэкономите трафик”.

Примечание: Считаются фактически отправленные ARP, а не попытки. Т.е. если среда была недоступна, то все равно отправят три, просто чуть позже.

Примечание: Если поставить нуль, то вдобавок отвалится функция обнаружения конфликтов DHCP, но это будет в другой истории.

Cisco ARP Optimization Feature – что это?

Это достаточно полезное архитектурное изменение, появившееся в релизах IOS 12.0 – 12.2 и закрепившееся в более поздних. Идея проста. Устройство хранит информацию о связках IP-MAC-интерфейс в отдельной таблице. Эта таблица организована для быстрого поиска информации по известному IP-адресу. Соответственно, этот механизм эффективен, когда надо обработать единичный пакет. В ситуации же, когда интерфейс попеременно переходит из состояния включения в выключенное и наоборот (interface flapping), надо сразу же обработать в этой таблице все ARP-записи, относящиеся ко всем IP и MAC, находящимся за данным интерфейсом. Вот фича Cisco ARP Optimization как раз умеет делать эту операцию – например, очистить все записи за соответствующий интерфейс. Выигрыш – резко сниженная загрузка CPU, которому надо обработать событие “падение интерфейса”.

Как настроить Cisco ARP Optimization Feature

Никак – это просто другая структура хранения данных ARP в оперативной памяти, используемая в современных версиях IOS.

Заключение

Если я вспомню ещё что-то, или меня наведут на мысль, то обязательно напишу сюда в качестве дополнения к статье.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *