Где плиты погружаются в мантию что при этом образуется

Движение плит

Характер движения плит определяет и то, что происходит на их границах. Некоторые плиты расходятся, другие сталкиваются, а некоторые трутся боками.

Сталкивающиеся плиты

В местах, где плиты сдвигаются, возникают граничные плиты нескольких типов, в зависимости от вида сталкивающихся плит. К примеру, на границе между океанической и материковой литосферой плита, образованная океанической корой, «подныривает» под материковую, создавая на поверхности глубокую впадину, или желоб. Зона, где это происходит, называется субдуктивной. Погружаясь все глубже в мантию, плита начинает расплавляться. Кора верхней плиты сдавливается, и на ней вырастают горы. Некоторые из них представляют собой вулканы, образованные магмой, которая прорывается вверх через литосферу.

Расходящиеся плиты

Зоны, где плиты отодвигаются друг от друга, встречаются на некоторых участках океанского дна. Они характеризуются горными цепями из вулканических пород. Такие вулканы не имеют крутых склонов или конической формы. Обычно это длинные цепи гор с пологими склонами. Две цепи разделены глубокой трещиной, обозначающей границу между плитами. Трещина открывается, когда на поверхность выбрасывается магма (расплавленная порода), поднимающаяся из астеносферы. Выйдя на поверхность, магма остывает и затвердевает по краям плит, образуя новые участки океанского дна. При этом магма все дальше отталкивает плиты друг от друга. Этот процесс, известный как расширение морского дна, не имеет конца, потому что трещина открывается вновь и вновь. Место, где это происходит, называется срединным хребтом.

Океанические плиты

Глубокие впадины также образуются и на границах двух сталкивающихся плит океанической литосферы. Одна из таких плит уходит под другую и расплавляется, опускаясь в мантию. Магма устремляется вверх через литосферу, и возле границы на оказавшейся сверху плите образуется цепь вулканов.

Материковые плиты

В тех местах, где лоб в лоб сталкиваются две плиты материковой литосферы, формируются высокие горные цепи. На границе материковая кора обеих плит сжимается, трескается и собирается в гигантские складки. При дальнейшем движении плит горные хребты становятся все выше, так как вся эта тона все больше выталкивается кверху.

Океанические впадины

Впадины, образующиеся на границах плит, — самые глубокие провалы земной поверхности. Глубочайшей считается Марианская впадина в Тихом океане (11 022 метра ниже уровня моря). В ней могла бы утонуть высочайшая в мире гора Эверест (8848 метра над уровнем моря). Для исследования океанических впадин применяются вот такие глубоководные аппараты.

Трущиеся плиты

Не все плиты удаляются друг от друга или сталкиваются лоб в лоб. Некоторые из них трутся боками, двигаясь либо в противоположных направлениях, либо в одном направлении, но с разными скоростями. На границе таких плит, как на суше, так и на морском дне, новая литосфера не образуется, а уже существующая не разрушается. Когда плиты материковой литосферы движутся навстречу друг другу, вся граничная зона выталкивается кверху, образуя высокие горные цепи. Когда плиты движутся бок о бок с разными скоростями, кажется, будто они перемещаются в противоположных направлениях.

Источник

Где плиты погружаются в мантию что при этом образуется

Литосферные плиты – крупные жесткие блоки литосферы Земли, ограниченные сейсмически и тектонически активными зонами разломов.

Более 90 % поверхности Земли покрыто 13-ю крупнейшими литосферными плитами.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Первым гипотезу о дрейфе материков (т.е. горизонтальном движении земной коры) выдвинул в начале ХХ века А. Вегенер. На ее основе создана теория литосферных пли т. Согласно этой теории, литосфера не является монолитом, а состоит из крупных и мелких плит, «плавающих» на астеносфере. Пограничные области между литосферными плитами называют сейсмическими поясами — это самые «беспокойные» области планеты.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Срединно-океанические хребты

Рифт огромный разлом в земной коре, образующийся при ее горизонтальном растяжении (т. е. там, где расходятся потоки тепла и вещества). В рифтах происходит излияние магмы, возникают новые разломы, горсты, грабены. Формируются срединно-океанические хребты.

Срединно-океанические хребты – мощные подводные горные сооружения в пределах дна океана, занимающие чаще всего срединное положение. Близ срединно-океанических хребтов происходит раздвижение литосферных плит и возникает молодая базальтовая океаническая кора. Процесс сопровождается интенсивным вулканизмом и высокой сейсмичностью.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Континентальными рифтовыми зонами являются, например, Восточно-Африканская рифтовая система, Байкальская система рифтов. Рифты, так же как и срединно-океанические хребты, характеризуются сейсмической активностью и вулканизмом.

Тектоника литосферных плит

Тектоника плит – гипотеза, предполагающая, что литосфера разбита на крупные плиты, которые перемещаются по мантии в горизонтальном направлении. Близ срединно-океанических хребтов литосферные плиты раздвигаются и наращиваются за счет вещества, поднимающегося из недр Земли; в глубоководных желобах одна плита подвигается под другую и поглощается мантией. В местах столкновения плит образуются складчатые сооружения.

Плиты, как правило, разделены глубокими разломами и перемещаются по вязкому слою мантии относительно друг друга со скоростью 2—3 см в год. В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. При взаимодействии континентальной и океанической плит плита с океанической земной корой пододвигается под плиту с континентальной земной корой, в результате образуются глубоководные желоба и островные дуги.

Движение литосферных плит связано с перемещением вещества в мантии. В отдельных частях мантии существуют мощные потоки тепла и вещества, поднимающегося из его глубин к поверхности планеты.

Теория тектоники плит объясняет возникновение землетрясений, вулканическую деятельность и процессы горообразования, по большей части приуроченные к границам плит.

Основные положения тектоники литосферных плит:

Значение тектоники плит. Тектоника плит связала различные науки о Земле, дала им предсказательную силу. Перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Автор: NikitaKovtunSlyudyanka — собственная работа, CC BY-SA 4.0, commons.wikimedia.org/w/index.php?curid=103450071

Тектоническая структура

Земная кора разделяется на устойчивые (платформы) и подвижные участки (складчатые области — геосинклинали). Геосинклинальные области и платформы — главнейшие тектонические структуры, находящие отчетливое выражение в современном рельефе.

Геосинклинали — подвижные линейно вытянутые области земной коры, характеризующиеся разнонаправленными тектоническими движениями высокой интенсивности, энергичными явлениями магматизма, включая вулканизм, частыми и сильными землетрясениями.

На ранней стадии развития в них наблюдаются общее погружение и накопление мощных толщ горных пород. На средней стадии, когда в геосинклиналях накапливается толща осадочно-вулканических пород мощностью 8-15 км, процессы погружения сменяются постепенным поднятием, осадочные породы подвергаются складкообразованию, а на больших глубинах — метаморфизации, по трещинам и разрывам, пронизывающим их, внедряется и застывает магма. В позднюю стадию развития на месте геосинклинали под влиянием общего поднятия поверхности возникают высокие складчатые горы, увенчанные активными вулканами; впадины заполняются континентальными отложениями, мощность которых может достигать 10 км и более.

Пройдя геосинклинальный цикл развития, земная кора утолщается, становится устойчивой и жесткой, не способной к новому складкообразованию. Геосинклиналь переходит в иной качественный блок земной коры — платформу.

Платформа (от франц. plat — плоский и forme — форма) — крупная (несколько тыс. км в поперечнике), относительно устойчивая часть земной коры, характеризующаяся очень низкой степенью сейсмичности.

Платформа имеет двухэтажное строение. Нижний этаж — фундамент — это древняя геосинклинальная область — образован метаморфизованными породами, верхний — чехол — морскими осадочными отложениями небольшой мощности, что свидетельствует о небольшой амплитуде колебательных движений.

Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия.

Фундамент более молодых платформ образован в периоды байкальской, каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.

В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.

Распространение и возраст платформ и геосинклиналей показывается на тектонической карте (карте строения земной коры).

Вы смотрели конспект по географии «Литосферные плиты. Тектоника литосферных плит». Выберите дальнейшее действие:

Источник

Глубинная геодинамика, или Как работает мантия Земли

В геологии за последние полвека произошли кардинальные изменения во взглядах на внутреннее строение и механизмы геологической эволюции нашей планеты. Благодаря успехам сейсмической томографии в глубинах Земли обнаружены две огромные области более горячей материи, простирающиеся до самого ядра планеты. Интересно, что их проекции на поверхность практически совпали с так называемыми горячими полями мантии, которые были выделены советскими геологами еще тридцать лет назад по косвенным данным. Сделанные открытия легли в основу концепции глубинной геодинамики, которая связала явления, происходившие на поверхности Земли, с процессами во внутренних оболочках планеты. В рамках этой концепции стало возможным не только понять причины неоднократного образования и разрушения суперконтинентов (как пример в настоящей статье дана реконструкция дрейфа Сибирского континента за последние полмиллиарда лет), но и предсказывать события, способные изменить карту материков и океанов в будущем

Геология как наука, в рамках которой стало возможно проводить экспериментальные исследования, предсказывать причины и проявления геологических, особенно глубинных, процессов, определять возраст различных минералов, пород и геологических структур, оформилась только в XX в. И это несмотря на то, что использование определенных минеральных образований было неотъемлемой частью культуры и хозяйственной деятельности человека с начала его существования. Обобщение разрозненных сведений было выполнено только в 30-х годах XIX в. выдающимся британским геологом Ч. Лайелем в фундаментальном труде «Основы геологии» (Lyell, 1830—1833). В нем были сформулированы основные положения об актуализме и униформизме, которые явились первой парадигмой геологии. С этого времени геология стала развиваться в рамках «нормальной науки» (в понятии Т. Куна).

Однако понадобилось много времени, крупные открытия в сопряженных науках, чтобы геология начала отражать Землю в полном объеме с учетом взаимодействия глубинных, эндогенных процессов с поверхностными процессами. Хочется напомнить, что еще в начале XX в. геологи были убеждены, что возраст Земли составляет всего 20—100 млн лет, и только открытие радиоактивности, позволившее определять возраст минералов и горных пород, дало инструмент, с помощью которого удалось показать, что возраст нашей планеты составляет около 4,5 млрд лет.

Скользящие по астеносфере

Для развития геологической науки большое значение имели полученные в прошлом столетии данные о строении Земли. Особо важным стало выделение литосферы, в которую включена земная кора. Лито­сфера характеризуется большой прочностью в отличие от подстилающей ее астеносферы, в которой имеется частично расплавленное вещество, в связи с чем в ней могут возникать конвективные потоки. Но все возможные разрывы, а соответственно, глубинные и поверхностные землетрясения, регистрируются именно в литосфере.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Три десятилетия назад в подошве мантии (внутренней оболочки) был открыт сравнительно узкий, имеющий мощность 150—350 км, слой D«, характеризующийся резким градиентом температуры: примерно от 4000° в подошве до 3000° на верхней границе. Этот слой имеет большое значение, так как до него доходят отдельные куски погружающейся в мантию литосферы и оттуда же начинается подъем глубинного мантийного вещества к поверхности Земли, о чем будет подробнее сказано ниже.

Крупные открытия, сделанные во второй половине прошлого столетия, привели к более полному пониманию особенностей строения и развития нашей планеты, но главное – была сформулирована концепция тектоники литосферных плит. В 1961 г. англичанин Р. Дитц и американец Г. Хесс, анализируя батиметрическую карту дна океанов, пришли к выводу, что срединно-океанические хребты, возвышающиеся над абиссальными долинами на 1—2 км, приурочены к центральным частям океанов. Наиболее хорошо это видно в Атлантическом океане, где подобный хребет прослеживается вдоль осевой зоны новообразованной коры океанического дна. Процесс разрастания океанического ложа они назвали «sea flow spreading» (растекание океанического дна). Образование новой коры происходит в центральных (рифтовых) структурах срединно-океанических хребтов.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

ОСНОВНЫЕ ПОЛОЖЕНИЯ КОНЦЕПЦИИ ТЕКТОНИКИ ПЛИТ

Американцы Ф. Вайн и М. Мэтьюз (1963) подтвердили спрединг наличием полосовых магнитных аномалий, образование которых определяется намагниченностью пород океанической коры в соответствии с современной им полярностью планетного магнитного поля. Полярность периодически меняется во времени с прямой (современная полярность) на обратную.

В1965 г. канадский геофизик Дж. Уилсон выделил особый тип разломов – трансформных. Их образование связано с горизонтальным перемещением океанической литосферы в стороны от срединно-океанического хребта. В. Морган и ряд других исследователей (1968) показали существенные различия глубинных геофизических структур срединных океанических хребтов и зон островных дуг. Для последних характерен поддвиг – опускание океанической литосферы в мантию до глубин около 600 км. Этот процесс­ был назван субдукцией.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

После окончательного формулирования в 1968 г. основных положений тектоники плит, объясняющей современную динамику Земли, эта теория сразу же завоевала признание большинства ученых мира. Так, уже в 1971 г. более трети статей по геологии, опубликованных в журнале Nature, было посвящено соответствующей тематике – предложенная концепция дала возможность объяснить большую часть современных эндогенных процессов. В скором времени положения тектоники плит были применены к расшифровке истории формирования горно-складчатых поясов, при этом многие геологи считали, что новая концепция позволяет решить большую часть проблем, связанных с эволюцией Земли.

По следу горячей точки

Еще в 1963 г., когда только создавались основы тектоники плит, Т. Уилсон (Wilson, 1963) обратил внимание на действующие вулканы, которые располагаются внутри океанических плит и образуют вулканические цепи, ориентированные противоположно по отношению к вектору перемещения океанической плиты. Было сделано предположение, что вулканические цепи связаны с горячими точками мантии, прожигающими литосферу по мере ее прохождения над ними. Принципиальным отличием горячих точек от литосферных плит является то, что литосферные плиты перемещаются по астеносфере и поэтому занимают на поверхности Земли разную географическую позицию в разное время, горячие же точки долгое время сохраняют свое положение относительно абсолютной системы географических координат, тождественной современной.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

К началу 70-х годов гипотеза горячих точек была принята многими исследователями. Предполагалось, что горячие точки представляют собой геохимические аномалии, так как магматические породы из таких точек (по сравнению с базальтами срединно-океанических хребтов) обогащены многими рассеянными химическими элементами. Сторонники этой концепции считали, что магматические породы, сформированные горячими точками, связаны с «пятнами» разогретой астеносферы, которые неподвижны и в свою очередь питаются мантийными плюмами – струями, поднимающимися из глубин нижней мантии, возможно от границы «ядро – мантия». В целом представления о горячих точках предполагали наличие узких (порядка 150 км в поперечнике) мантийных струй (или столбов), которые пронизывают всю толщу мантии, оставаясь неподвижными на протяжении десятков миллионов лет.

Внутри литосферной плиты, которая стоит над «пятном» разогретой мантии, формируется вулкан; при смещении плиты относительно горячей точки над ней образуется новый вулкан, а в итоге – цепь потухших вулканов, которые фактически трассируют след, прожигаемый горячей точкой на плите.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

В этом отношении впечатляющим примером служит Гавайская горячая точка, с которой связано возникновение Гавайско-Императорского хребта, существующего почти 100 млн лет. Эту точку использовали многие исследователи для реконструкции перемещений Тихо­океанской плиты. Следует отметить, что реконструкции по Гавайской точке полностью совпадают с реконструкцией движения Тихоокеанской плиты, восстановленной по полосовым магнитным аномалиям.

Однако ряд исследователей, например (Runcorn, 1980), указывали, что геологические и физико-химические параметры мантии делают маловероятным существование плюмовых столбов. Была выдвинута концепция мембранной тектоники (Turcotte, 1974), согласно которой жесткие литосферные плиты, перемещаясь по эллиптической поверхности Земли, проходят через участки с различным радиусом кривизны, в результате чего в плитах возникают глубокие трещины, которые заполняются базальтовой выплавкой. Особенности состава мантийных выплавок объяснялись только разной глубиной образования магматических расплавов. У нас в стране такое объяснение горячих точек горячо поддерживалось О. Г. Сорохтиным (1979). Однако все эти гипотезы не предполагали наличия каких-либо глубинных структур Земли, влияющих на геологические процессы в верхних оболочках.

Первопроходцы горячих полей

К 1980 г. внутриплитовая магматическая активность была установлена как в океанах (вулканические острова и плато), так и на континентах, где о ее про­явлениях свидетельствовали большие геохимические отличия по сравнению с породами, связанными с границами плит. При этом для отдельных горячих точек детально исследовались связанные с ними внутриплитовые магматические породы, особенности их состава и т. п.

Однако работ по анализу общих взаимосвязей горячих точек (как глубинных образований) и поверхностных геологических структур не было. Чтобы восполнить этот пробел в знаниях, видный советский геолог Л. П. Зоненшайн предложил автору этой статьи М. И. Кузьмину рассмотреть данную проблему. Подход был исключительно простым – найти чисто географические закономерности распределения на земной поверхности продуктов внутриплитового магматизма. При этом во внимание были приняты лишь объекты, имеющие сравнительно небольшой (0—15 млн лет) возраст, чтобы возможный дрейф континентов не вносил больших искажений.

Из полученной в результате карты распределения горячих точек следует, что существуют четыре области распространения современного внутриплитового магмати­зма: две больших – Тихоокеанская и Африканская и две малых – Центрально-Азиатская и Тасманская. Наиболее крупные из них достигают 10 000 км в поперечнике (Африканская и Тихоокеанская). Их размеры сопоставимы с размерами главных литосферных плит, однако контуры областей не совпадают с границами этих плит.

Результаты были опубликованы в статье «Внутри­плитовый магматизм и его значение для понимания процессов в мантии Земли» (Зоненшайн, Кузьмин, 1983), а области распространения внутриплитового магматизма были названы горячими полями Земли. Было отмечено, что горячие поля Земли совпадают с крупными положительными аномалиями в рельефе, а также положительными отклонениями формы геоида. Судя по геохимическим особенностям внутриплитовых магматических пород, этим областям отвечают аномалии вещественного состава, по-видимому, связанные с нижней мантией. Последний вывод следует из того, что породы, образующиеся в океанических рифтовых зонах (т. е. на краях плит), являются продуктами плавления верхней, сильно истощенной в геохимическом отношении, мантии – и поэтому имеют очень низкое содержание всех литофильных химических элементов.

Таким образом, выделенные горячие поля мантии Земли можно было представить как области, в которых происходит подъем вещества и энергии нижней мантии к поверхности планеты, а располагающиеся между ними холодные поля (связанные с зонами субдукции литосферных плит) – как зоны, в которых вещество опускается в низы мантии. В совокупности эти процессы вырисовывали согласованную систему конвекционных течений в мантии.

Если процессы, связанные с верхними оболочками, можно было описать в рамках тектоники литосферных плит, то обнаружение горячих полей позволило говорить о том, что конвективные явления имеют более глубинную природу. Иными словами, полученные результаты позволили впервые высказать представления о взаимосвязи процессов в нижней и верхней мантии.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Узкие мантийные струи, с которыми связаны горячие точки, могли представлять собой плюмы, отходящие от границы раздела нижней и верхней мантии, куда подходит разогретое вещество нижней мантии. Именно они порождают внутриплитовый магматизм и создают систему горячих точек. Неподвижность отдельных горячих точек относительно мигрирующих над ними литосферных плит определяется фиксированным положением горячих полей в глубинных горизонтах Земли, которое оставалось неизменным в течение как минимум 150 млн лет (Геотектоника, 1983). Заметим, что все эти выводы были сформулированы до появления сейсмотомографии, позволившей геологам понять внутреннюю структуру мантии во всем ее объеме.

К сожалению, информация о горячих полях мантии Земли так и не дошла до мирового геологического сообщества. Англоязычная версия статьи была подготовлена во время пребывания авторов в океанической экспедиции на Цейлоне и отправлена почтой в редакцию журнала Earth Planetary Science Letters, но до адресата не дошла. Полноценной копии не было, начались работы над другими задачами. Отсутствие подготовленной аудитории привело к тому, что эта идея на какое-то время была забыта.

Сейсмотомография – ключ к пониманию глубинных процессов

В 70—80-х годах прошлого столетия в результате совершенствования вычислительной техники и роста количества исследований по сейсмологии большое развитие получила сейсмотомография. На основе анализа скоростей прохождения сейсмических волн через тело Земли в ее мантии выделены крупные объемы, имеющие разные скорости прохождения этих волн. Благодаря этому факту и работе многих исследователей были сделаны очень важные выводы.

На Земле существуют две большие «низкоскоростные» провинции: Африканская и Тихоокеанская, которые в настоящее время также названы суперплюмами, так как данные сейсмотомографии показывают, что «низкоскоростное» мантийное вещество прослеживается от слоя D« до верхов мантии. Следует заметить, что проекции этих мантийных провинций на поверхности Земли совпадают с выделенными ранее горячими полями мантии Земли.

В отличие от них высокоскоростные мантийные провинции ассоциируются с холодными областями, которые характеризуются опусканием и поглощением литосферных плит мантией в зонах субдукции. Субдуцированная (поглощаемая) литосфера частично остается на границе верхней и нижней мантии, а частично погружается до слоя D«, расположенного на границе «ядро – мантия». Этот процесс формирует общемантийную конвекцию: «холодное» субдуцированное вещество в виде нисходящих потоков погружается в глубь мантии Земли, компенсирующий подъем горячей мантии происходит в виде мантийных плюмов. Погрузившееся в слой D« вещество литосферы под влиянием энергии, поступающей от ядра, формирует частично расплавленные массы (Kearey et al., 2009), которые являются зародышами поднимающихся к поверхности Земли горячих плюмов.

Горячая мантия суперплюмов в виде огромного облака поднимается через нижнюю мантию, распадаясь на ряд изолированных плюмов, которые образуют скопления горячих точек в верхней мантии в литосфере. Сопряженность восходящих и нисходящих потоков в мантии позволила предполагать тесную связь между процессами глубинной геодинамики, которым отвечают мантийные плюмы, и тектоникой плит.

Наиболее убедительным аргументом связи тектоники плит и тектоники плюмов является взаимосвязь процессов образования суперконтинентов и суперплюмов в единых суперконтинентальных циклах. В настоящее время установлено, что в процессе эволюции Земли возникали суперконтиненты, объединяющие практически все континентальные массы Земли. В дальнейшем они разрушались под действием суперплюмов, и движения отдельных континентов становились центробежными. Исследователи предполагают, что в разное время на нашей планете существовали как минимум четыре суперконтинента (Кенорленд, Колумбия, Родиния и Пангея), которые в дальнейшем разбивались зародившимися под ними суперплюмами.

Суперконтинент Родиния сформировался около 1 млрд лет назад и начал распадаться спустя примерно 250 млн лет под воздействием расположенного под ним Родинийского суперплюма. Предполагается, что одновременно с Родинийским существовал антиподальный ему суперплюм, расположенный в океане в противостоящем Родинии секторе Земли. После распада Родинии составляющие ее континенты, в том числе и Сибирь, могли переместиться в соответствующие области позднерифейского океана.

Попытка решения задачи абсолютных геореконструкций была предпринята в работе, опубликованной в журнале Earth-Science Review (Kuzmin et al., 2010). Полученные результаты позволили ответить на ряд вопросов, связанных с оценкой роли плюмов в геологической истории Земли и особенно с пониманием места горячих полей мантии Земли среди движущих механизмов ее развития.

Исландская горячая точка и дрейф Сибирского континента

Для того чтобы понять историю формирования Сибири в фанерозое, авторами были выполнены палеогеодинамические реконструкции. Для определения широтного положения геологических объектов в геологическом прошлом одним из ключевых является палеомагнитный метод. Для определения долготного положения требуются дополнительные построения.

При интерпретации установленных палеомагнитным методом данных был сделан вывод, что после распада Родинии Сибирь была выдворена за пределы суперконтинента и попала под влияние суперплюма, антиподального Родинийскому. Именно с этим суперплюмом, по-видимому, большую часть фанерозоя взаимодействовал Сибирский континент. Но для того, чтобы выполнить соответствующие абсолютные (т. е. привязанные к современной сетке географических координат) палеореконструкции, необходимо было определить положение проекции этого суперплюма на земной поверхности или, что то же самое, отвечающее ему горячее поле мантии.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Было принято решение использовать для этого Исландскую горячую точку, имеющую неизменное географическое положение в длительном интервале геологического времени. Так, судя по следу, оставленному этим плюмом в литосфере Сибири, Северной Америки и Северной Атлантики, он однозначно существует уже как минимум 150 млн лет. Кроме того, ряд исследователей считает, что 250 млн лет тому назад он же определил формирование Сибирской трапповой провинции. Действительно, пермо-триасовая палеоширота Сибирских траппов (62° ± 7°) приблизительно соответствует современной географической широте Исландии (65° ± 2°). Кроме того, данные по элементному составу относимых к Исландской горячей точке базальтов Западно-Сибирской рифтовой системы, Сибирских траппов, базальтов Арктического бассейна, Восточной Гренландии и Исландии свидетельствуют об изотопно-геохимических связях этих проявлений мантийного магматизма. Так, соотношение изотопов Sr и Nd в этих разновозрастных базальтах образует единый тренд в интервале времени от 300 млн лет назад до современности (Kuzmin et al., 2010).

Все эти сопоставления позволяют говорить о том, что северная граница Африканского горячего поля (суперплюма), фиксируемая Исландской горячей точкой, уже существовала к рубежу 250 млн лет. Была освещена и более ранняя страница в его истории: в статье (Torsvik et al., 2008) показано, что большая изверженная провинция с центром в Скагерракском грабене (Северное море), охватывающая огромную территорию от Англии до Германии и Швеции, существовала около 300 млн лет назад. В то время ее центр располагался в краевой части Африканского горячего поля, а именно вблизи его экваториальной зоны. В соответствии с этими данными, тогдашние контуры Африканской мантийной провинции были близки к современным.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

ВНУТРИПЛИТОВЫЙ МАГМАТИЗМ СИБИРСКОЙ ЧАСТИ АЗИАТСКОГО КОНТИНЕНТА

Учитывая меридиональную вытянутость Африканского горячего поля и ее географическую стабильность, зафиксированную Исландской горячей точкой за последние 250 млн лет, было сделано предположение, что перемещения Сибири по широте в фанерозое были ограничены рамками этого поля. Соответственно, меридиональные границы Африканского суперплюма (между 10° з. д. и 70° в. д.) были приняты за рамки, в пределах которых Сибирь меняла долготную позицию. При этом ее широтные перемещения были существенно более значительны, что следует из данных многих авторов, обобщение которых сделал геофизик В. А. Кравчинский (Кузьмин и др., 2011 а). На основании этих реконструкций была составлена схема дрейфа Сибирского континента, начиная от 570 млн лет назад до современности.

Откуда приплыла Сибирь

Есть многочисленные свидетельства того, что Сибирь перемещалась, начиная с конца рифея (

600 млн лет назад), через область развития мантийных плюмов. По палеомагнитным данным установлено, что в Джидинском (Южная Бурятия) фрагменте древней океанической коры базальты типа OIB формировались на 15—20° S, т. е. уже 570 млн лет назад Сибирский континент помещался в пределах влияния Африканской «низкоскоростной» мантийной про­винции (LLSVP).

В течение раннего кембрия, по данным (Pisarevsky et al., 1997), долготная позиция Сибирского континента в пределах Африканского горячего поля мантии была определена меридианом 20° E. Начиная со среднего кембрия, Сибирь стала двигаться в северном направлении от 20° S, приблизившись почти к экваториальной широте в раннем и среднем ордовике. При этом в интервале от 512 до 480 млн лет назад меридиональная составляющая скорости движения достигла 5 см/год. Если допустить, что было еще и смещение по долготе, то суммарная скорость должна быть выше. Важно подчеркнуть, что полученная величина является относительно высокой по сравнению с современными темпами дрейфа континентов. Поэтому естественно предположить, что сдвиг поперечно меридиану был минимальным.

Реконструкции перемещения Сибири в более позднее время (вплоть до пермо-триасса) опирались на данные по зафиксированным в ее строении следам горячих точек – Алтае-Саянской, Вилюйской, Баргузинской (Сибирских траппов) и Монгольской. Эти реконструкции показали, что в предположении фиксированной меридиональной позиции Сибири скорость ее перемещения в северном направлении составляла около 7 см/год.

Наиболее ранний мантийный плюм, который проявился в структуре Сибирского континента, повлиял на характер развития Алтае-Саянской области еще в ордовике (Добрецов, 2011). Позднее, в раннем девоне, после столкновения Алтае-Саянской области с Сибирью этот плюм (координаты 40 ± 15° N : 0° Е) способствовал возникновению тройной системы грабенов Алтае-Саянской рифтовой области. К середине девона Сибирь продолжала располагаться над Алтае-Саянской горячей точкой, которая благодаря вращению континента перекрыла Вилюйскую горячую точку (координаты 35 ± 15° N и около 20° W). Воздей­ствие последней на литосферу привело к образованию грабенов Вилюйской рифтовой системы и расколу континента в его восточной части. После того как континент отошел от этих горячих точек, их следы затерялись. Более длительное воздействие на Сибирский континент оказали Исландская и Монгольская горячие точки, ответственные за ряд магматических ареалов Центральной Азии.

Как следует из палеомагнитных данных, в раннем карбоне Сибирь переместилась за 40 млн лет от 30° к 60° N, т. е. средняя скорость составила примерно 11 см/год. Столь высокая величина указывает на то, что перемещение происходило вдоль меридиана, т. е. практически отсутствовал сдвиг континента в параллельном экватору направлении. Это перемещение привело к столкновению и к тому, что южная (в современных координатах) Забайкальская окраина Сибири накрыла Исландскую горячую точку (Kuzmin et al., 2010). Взаимодействие плюма со структурами этой окраины привело к образованию Баргузинского зонального магматического ареала с батолитовым Ангаро-Витимским ядром и периферическими рифтовыми зонами. Столь специфическая форма выражения плюмовой активно­сти определялась особенностями проявления плюма в субдукционной обстановке активной континентальной окраины, которые привели к масштабному анатексису (плавлению) коры.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Вращение Сибири по часовой стрелке на протяжении пермского периода (от 280 до 250 млн лет назад) привело к миграции магматизма, связанного с Исландской горячей точкой от Баргузино-Витимского ареала к провинции Сибирских траппов. Соответствующий след движения Сибири прослеживается по палеомагнитным данным, в частности по перемагничиванию древних пород в Озерном полиметаллическом и Сухоложском золотом месторождениях на пермо-триасовую ориентацию (Kuzmin et al., 2010).

Одновременно с Баргузино-Витимским ареалом другой внутриплитный магматический ареал возник в Южной Монголии, где сформировались рифтовые зоны Гоби-Тяньшаньская и Главного Монгольского линиамента (310—285 млн лет), а также траппы Тарима. Их образование было связано с Монгольской (или Таримской) горячей точкой. Вращение Сибири в перми и раннем мезозое, которое привело к смещению местоположения Сибирских траппов над Исландской точкой, определило также миграцию магматизма над Монгольской горячей точкой в Забайкалье. Эта мигра­ция привела к образованию Хангайского и Восточно-Монгольского-Забайкальского зональных магматических ареалов, подобных по своему строению Баргузинскому.

В мезозое Сибирь двигалась от Исландской горячей точки и это смещение зафиксировано следом магматических проявлений, который сформировался на протяжении мезозоя в Арктическом бассейне. Проведенные реконструкции показали, что тогда Сибирь вышла из-под влияния Африканского горячего поля, и в интервале между 190 и 160 млн лет назад внутриплитная магматическая активность в пределах Сибирского континента не зафиксирована.

Активизация внутриплитных процессов в южном обрамлении Сибирской платформы в позднем мезозое и кайнозое была связана с образованием здесь ряда долгоживущих горячих точек мантии, которые сохраняют свою устойчивую географическую позицию на протяжении более 140 млн лет. Эти горячие точки тяготеют к скоплению мантийных плюмов, выявленному Жао (Zhao, 2009) в пределах юго-западной окраины Тихого океана, которое, по-видимому, отвечает одному из ответвлений Тихоокеанского суперплюма. Поэтому можно полагать, что к началу позднего мезозоя Сибирь существенно сместилась к востоку и попала в сферу влияния Тихоокеанского плюма. Столь быстрое широтное перемещение Сибирского континента, по-видимому, произошло вследствие раскрытия в это время Атлантического и Индийского океанов.

Суммируя вышеизложенное, прежде всего можно сказать, что Земля представляет собой самоорганизующуюся систему, развитие которой сопряжено со взаимодействием ее внутренних оболочек. Это взаимодействие проявляется в процессах разномасштабной конвекции.

Верхнемантийная конвекция приводит в движение литосферные плиты. В свою очередь ее энергетическая подпитка обеспечивается более глубокой конвекцией, которая определяется, с одной стороны, процессами в зонах субдукции, где происходит погружение «холодных» литосферных блоков в глубины мантии вплоть до границы с ядром, что порождает противотоки более горячей мантии к поверхности Земли; с другой стороны, обменные процессы на границе ядра и мантии приводят к значительному разогреву последней, возможно, вплоть до ее плавления в слое D«. Такая перегретая и менее плотная мантия обретает повышенную плавучесть и также устремляется кверху, стимулируя в конечном счете процессы общемантийной конвекции.

В отличие от нисходящих потоков субдуцированных слэбов, имеющих геометрию крупных пластин с большими линейными размерами, подъем горячей мантии к поверхности Земли происходит в виде отдельных струй или мантийных плюмов. В настоящее время установлено, что такие восходящие струи мантии в основном сконцентрированы в двух секторах Земли, которые поэтому выделяются как суперплюмы: Тихо­океанский и Африканский. Нижняя мантия этих суперплюмов характеризуется повышенной температурой и в сейсмических полях выделяется областями пониженных скоростей распространения волн, что позволяет выделять их также в виде крупнейших низкоскоростных мантийных провинций.

Где плиты погружаются в мантию что при этом образуется. Смотреть фото Где плиты погружаются в мантию что при этом образуется. Смотреть картинку Где плиты погружаются в мантию что при этом образуется. Картинка про Где плиты погружаются в мантию что при этом образуется. Фото Где плиты погружаются в мантию что при этом образуется

Очевидно, что роль таких суперплюмов в формировании структуры литосферной оболочки Земли трудно переоценить. И здесь возникает вопрос об их природе – когда и почему зарождаются суперплюмы, какова длительность их существования, насколько стабилен режим их воздействия на литосферу?

Определенный вклад в решение этих вопросов вносят выполненные авторами исследования. Прежде всего, они зафиксировали то, что проявления внутриплитной активности в пределах Сибирского континента в течение всего фанерозоя стали следствием его миграции над скоплением горячих точек, которое сопоставляется с современным Африканским суперплюмом и отвечающей ему LLSVP. Непрерывность внутриплитной активности в рамках этого суперплюма позволяет говорить о его возрастной идентичности суперплюму, антиподальному тому, который разрушил Родинию. Следовательно, этот суперплюм существует не менее одного миллиарда лет. А учитывая то, что Родинийский суперплюм сопоставляется с Тихоокеанским по месту своего проявления, оба этих суперплюма следует рассматривать как наиболее долгоживущие глубинные структуры Земли.

Связь суперплюмов с процессами формирования и разрушения суперконтинентов в настоящее время является общепризнанной. Но последние результаты позволяют говорить, что осколки суперконтинентов, после их разрушения суперплюмом-убийцей, перемещаются в области Земли, контролируемые антиподальным суперплюмом, и образуют над ним новую суперконтинентальную агломерацию. Такое участие супер­плюмов в образовании и последующем разрушении супер­континентов, по-видимому, отражает их противо­фазную активность, вероятно, связанную с разным проявлением отвечающих им конвективных процессов, одной из причин которой мог стать эффект термо­статирования (Коваленко и др., 2010; Kovalenko et al., 2010).

Наконец, следует сделать вывод прогнозного характера. Тот факт, что при образовании суперконтинента, в частности Пангеи, отдельные континенты проходят над разновозрастными горячими точками суперплюмов и сохраняют в своем строении их следы, позволяет предполагать, что уже в ближайшем будущем существующие методы изучения магматических пород позволят дать оценку эволюции их мантийных источников как для отдельных плюмов, так и для суперплюмов в целом. В конечном итоге это будет способствовать пониманию общих закономерностей эволюции Земли.

Айзекс Б., Оливер Дж., Сайкс Л. Сейсмология и новая глобальная тектоника // Новая глобальная тектоника. М.: Мир, 1974. С. 133—179.

Добрецов Н. Л., Кирдяшкин А. Г., Кирдяшкин А. А. Глубинная геодинамика. Новосибирск: Изд-во СО РАН; филиал «Гео», 2001. 407 с.

Добрецов Н. Л., Борисенко А. С., Изох А. Э., Жмодик С. М. Геодинамическая модель пермотриасовых мантийных плюмов Евразии как основа прогноза рудных месторождений // Геология и геофизика. 2010. Т. 51, № 9. С. 1159—1187.

Зоненшайн Л. П., Кузьмин М. И. Внутриплитовый вулканизм и его значение для понимания процессов в мантии Земли // Геотектоника. 1983. № 1. C. 28—45.

Зоненшайн Л. П., Кузьмин М. И. Палеогеодинамика. М.: Наука, 1992. 192 с.

Зоненшайн Л. Р., Кузьмин М. И., Натапов Л. М. Тектоника литосферных плит территории СССР: в 2 кн. М.: Недра, 1990. Кн. 1. 326 с. Кн. 2. 334 с.

Изменение окружающей среды и климата: природные­ и связанные с ними техногенные катастрофы (отв. ред. В. И. Коваленко, В. В. Ярмолюк, О. А. Богатиков).

Т. 2: Новейший вулканизм Северной Евразии: закономерности развития, вулканическая опасность, связь с глубинными процессами и изменениями природной среды и климата. ИГЕМ РАН, ИФЗ РАН, 2008. 430 с.

Кузьмин М. И., Ярмолюк В. В., Кравчинский В. А. Абсолют­ные палеогеографические реконструкции Сибирского континента в фанерозое: к проблеме оценки времени существования суперплюмов // Докл. Акад. наук, 2011 а. Т. 437. № 1. C. 68—73.

Кузьмин М. И., Ярмолюк В. В., Кравчинский В. А. Фанерозойский внутриплитный магматизм Северной Азии: абсолютные палеогеографические реконструкции африканской низкоскоростной мантийной провинции // Геотектоника. 2011 б. Т. 45, № 6. C. 3—23.

Хаин В. Е. Основные проблемы современной геологии.

М.: Научный мир, 2003. 348 с.

Харин Г. С. Импульсы магматизма Исландского плюма // Петрология. 2000. Т. 8, № 2. С. 115—130.

Condie K. C. Mantle Plumes and their Record in Earth History. Cambridge University Press, 2001. 305 p.

Kovalenko V. I., Yarmolyuk V. V., Bogatikov O. A. Modern Volcanism in the Earth’s Northern Hemisphere and Its Relations with the Evolution of the North Pangaea Modern Supercontinent and with the Spatial Distribution of Hotspots on the Earth: The Hypothesis of Relations between Mantle Plumes and Deep Subduction // Petrology. 2010. Vol. 18, No. 7. P. 657—676.

Kuzmin M. I., Yarmolyuk V. V., Kravchinsky V. A. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province // Earth-Science Review. 2010. Vol. 102. No. 1—2. P. 29—59.

Li Z. X., Zhong S. Supercontinent–superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics //Physics of the Earth and Planetary Interiors. 2009. 176, 143—156.

Maruyama S., Santosh M., Zhao D. Superplume, supercontinent, and postperovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary // Gondwana Research. 2007. 11 (1—2). 7—37.

Morgan W. J. Deep mantle convection plumes and plate motions // Bull.Am.Assoc.Petroleum Geols. 1972. Vol. 56. P. 203—213.

Yuen D. A., Maruyama S. H., Karato S.-I., Windley B. F. Superplumes: Beyond Plate Tectonics. Springer, 2007. 569 p.

Авторы благодарят Вадима Кравчинского, который, к сожалению, не принимал участия в написании этой работы, но без его обоснования абсолютных реконструкций Сибирского континента невозможно было бы получить научные результаты, популярное изложение которых авторы представляют в настоящей статье

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *