Генератор в чем измеряется
Мощность синхронного генератора (альтернатора)
В самом начале нужно определиться с терминологией. Электрическая энергия вырабатывается классическим синхронным генератором, иначе называемым альтернатором. Он приводится во вращательное движение бензиновым или дизельным двигателем. Генератор и мотор объединяются воедино и представляют собой генераторный агрегат.
Величина мощности, вырабатываемой агрегатом, напрямую определяется двумя составляющими:
Мощность двигателя обусловлена такими техническими параметрами, как объём цилиндров и компрессия. В качестве единицы измерения мощности бензиновых и дизельных моторов обычно используют «лошадиную силу» — 1 л.с. Реже применяют традиционные киловатты — 1 кВт.
Сила тока определяется, главным образом, диаметром (толщиной) провода, из которого наматываются обмотки альтернатора. И, конечно же, на силу тока, а, следовательно, и электрическую мощность влияет магнитный поток — чем он выше, тем мощнее синхронный генератор.
В общем случае процесс роста нагрузки при подключении к генератору потребителей состоит в следующем. Появление в цепи ещё одного потребителя вызывает увеличение силы тока, циркулирующего по обмоткам альтернатора. Чем он выше, тем сильнее магнитное поле сопротивляется вращению вала двигателя. Это приводит к уменьшению количества оборотов, вследствие чего устройство регулировки скорости вращения вала даёт команду на увеличение количества горючего, из-за чего повышается число оборотов и восстанавливается генерация электроэнергии.
Из вышеизложенного становится очевидным, что независимо от конкретной конструкции генераторного агрегата объём потребляемого мотором горючего всегда находится в прямой зависимости от величины нагрузки. Таким образом, для того или иного генераторного агрегата можно довольно точно указать расход горючего на выработку 1 кВт электрической энергии. Эта величина составляет около 285 г. А вот потребление горючего в единицу времени, скажем, 9 л/ч, может определяться лишь при условии постоянной нагрузочной мощности на протяжении всего периода, в данном случае, 1 часа.
Некоторые поставщики генераторных агрегатов говорят о реальной возможности функционирования устройств при перегрузке в 300%. Эти коммерсанты определённо лукавят, не оговаривая одного очень важного момента. Дело в том, что от перегрузки может страдать не только альтернатор. Он, в принципе, может выдержать рост потребляемой мощности до указанной величины — примерно в течение 20 секунд.
Однако такая перегрузка оказывает негативное влияние и на двигатель, поскольку его вал стремится остановить трёхкратно возросшая сила тормозящего магнитного поля. В результате мотор может вовсе остановиться. Это означает, что если альтернатор ещё может выдержать катастрофическое увеличение мощности, то генераторный агрегат в целом — вряд ли. Читая рекламную информацию о защищённости генератора от перегрузок, всегда следует помнить об этом аспекте.
Считаем важным сказать о том, какая мощность обычно указывается в техническом описании генераторного агрегата. Здесь следует отметить, что нагрузка может быть активной и реактивной. Вал двигателя нагружает активная нагрузочная энергия и горючее расходуется, в основном, на неё. Величина тока, протекающего по обмоточным проводам альтернатора, определяется суммой активной и реактивной составляющих нагрузки, которая часто называется полной мощностью.
По этой причине в техническом описании обычно указывается 2 мощности — полная и активная. Полная измеряется в киловольт-амперах (кВА) и является, образно говоря, «пропускной способностью» альтернатора по току. Активная измеряется киловаттами (кВт) и равняется мощности, которую развивает двигатель при вращении вала.
Пример
Мощность генераторного агрегата составляет 100кВт/125кВА. Это означает, что мотор вращает вал с активной мощностью в 100 кВт, и потребители могут «добирать» нужный им объём электроэнергии за счёт реактивной составляющей, но при этом величина полной мощности не может быть более 125 кВА.
Трансформация трехфазного генератора в однофазный
Довольно часто практическое использование маломощного 3-фазного генератора для электропитания большого количества однофазных потребителей связано с неудобствами. Например, при мощности станции в 30 кВт каждая фаза рассчитана соответственно на 10 кВт. Если к какой-либо фазе подключить нагрузку, превышающую этот показатель, то сработает защитная автоматика, и генератор отключится.
Применение однофазных генераторных агрегатов позволяет при включении потребителей не рассчитывать каждый раз их распределение и мощность. 1-фазный генератор можно получить путём несложной трансформации 3-х фазного. Для этого нужно лишь переключить определённым образом обмоточные провода статора и заменить ряд компонентов на отводном электрощите. Нижеследующие рисунки отлично иллюстрируют процесс переделки 3-фазного генератора в 1-фазный. Рассмотрим их подробнее.
В процессе генерации на выходе 3-фазного альтернатора возникает напряжение, снимаемое с 6 сегментов обмоток, которые соединяются взаимно в виде «звезды» (см. рис.).
Прямоугольники — это отдельные обмотки напряжением 110 В. Если соединить их так, как показано на следующем рисунке, то 3-фазный альтернатор станет 1-фазным.
Параллельное соединение обмоток позволяет вдвое увеличить фазный ток. Максимальное значение мощности 3-фазного альтернатора при силе тока на одной обмотке в I А подсчитывается по формуле 3(фазы)×220 В×I А. Наибольшая же мощность 1-фазной модификации будет составлять уже 220 В×2I (А). Следует учитывать, что при трансформации 3-фазного альтернатора в 1-фазный его активная мощность (кВА) ограничивается диаметром обмоточных проводов и составляет 2/3 от суммарной мощности по паспорту устройства до переделки. При этом трансформация электрической части генераторного агрегата не влияет на мощность его механического узла — двигателя. Она остаётся неизменной.
Пример
3-фазный генератор мощностью 20 кВА/16 кВт трансформирован в 1-фазный. Это привело к следующим изменениям. 20 кВА уменьшились до 13,3 кВА (20 к ВА×2/3=13,3 кВА). И независимо от того, что мотор может развить механическую мощность в 16 кВт, что обеспечит выработку 20 кВА, обмотки альтернатора не смогут выдержать свыше 13,3 кВА. По этой причине в переделанных модификациях 1-фазных электростанций альтернатор должен ограничивать мощность. В заводских генераторных агрегатах, 1-фазных изначально, используются более мощные альтернаторы. Именно это является причиной повышенной цены.
1-фазные модификации | |||||||||||||||||||||||||||||||||||||
Модель | Мотор | Заводские | Трансформированные | ||||||||||||||||||||||||||||||||||
Мощность основная | Мощность резервная | Мощность основная | Мощность резервная | ||||||||||||||||||||||||||||||||||
кВА | кВА | кВА | кВА | ||||||||||||||||||||||||||||||||||
G8QX | YANMAR 3TNV76 | 6 | 6,6 | 5,1 | 5,7 | ||||||||||||||||||||||||||||||||
G13QX | YANMAR 3TNV88 | 9,5 | 10,3 | 8,2 | 8,9 | ||||||||||||||||||||||||||||||||
G17QX | YANMAR 4TNV88 | 13,2 | 14,2 | 10,7 | 11,3 | ||||||||||||||||||||||||||||||||
G22QX | YANMAR 4TNV84T | 15,6 | 17,1 | 13,3 | 14,7 | ||||||||||||||||||||||||||||||||
G33QX | YANMAR 4TNV98 | 24 | 26 | 20,7 | 22,0 | ||||||||||||||||||||||||||||||||
G45QX | YANMAR 4TNV98T | 30 | 32 | 27,3 | 30,0 | ||||||||||||||||||||||||||||||||
G65QX |
Прибор | Мощность (Вт) | Пусковой ток |
---|---|---|
Лампа накаливания | 20-250 | 1,0 |
Пылесос | 700-1790 | 1,1 |
Электрическая дрель | 500-1100 | |
Телевизор или ноутбук | 100-350 | 1,1 |
Холодильник | 150-600 | 3 |
Сушильно/стиральная машина | 2100-2500 | 1,5 |
Обогреватель | 1000-2000 | |
Микроволновая печь | 1500-2000 | 2 |
Электрическая бетономешалка | 500-850 | 3,0 |
Электрическая плитка | 1800-3000 | 1,1 |
Циркулярка (пила) | 1000-1600 | 1,5 |
Сварочный аппарат | 2000-2200 | 4,0 |
Рассчитываем мощность генератора
Условно обрисуем ситуацию с выбором генератора.
Так, если мощность используемой электроплиты 1800 Вт, а пусковой коэффициент составляет 1,1, необходимо произвести следующее вычисление:
Таким образом, мощность генератора в этом случае не может быть менее 2 кВт.
Если мощность обогревателя равняется 1000 Вт при пусковом коэффициенте 1,1, получается:
Следовательно, мощность генератора никак не может быть меньше 1 кВт.
В случае если мощность электрической бетономешалки 500 Вт, а ее пусковой коэффициент может быть 3,0, таким образом будет:
В таком случае для этих работ мощность генератора не может быть ниже 2 кВт.
Суммируя все эти показатели (2 кВт+1 кВт+2 кВт) получается, что для одновременной работы всех этих приборов требуется генератор, мощностью больше 5 кВт.
Чем грозит неправильный выбор мощности?
В случае если мощность генератора подобрана неверно, возможна его перегрузка с последующей остановкой. При длительной эксплуатации агрегата на предельных режимах значительно сокращается срок его службы и существенно увеличивается расход топлива.
- Генератор в машине что это такое
- Генератор во что поиграть