Генная инженерия что сделала

Редактирование людей: как и зачем ученые проводят операции с геномом

Каждый из живых организмов на Земле носит в клетках наследственный материал своих предков. Эти данные называются геномами, и они нужны непосредственно для создания и поддержания деятельности организма. Генная инженерия работает над изменениями в наследственной информации. Рассказываем, что происходит с редактированием геномов прямо сейчас.

Читайте «Хайтек» в

Применение генной инженерии в научных исследованиях

Для изучения функции того или иного гена может быть применён нокаут гена. Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации.

Для нокаута синтезируют такой же ген или его фрагмент, измененный так, чтобы продукт гена потерял свою функцию. Основные методы реализации: цинковый палец, морфолино и TALEN.

Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцисту суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.

Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортерным элементом, например, с геном зеленого флуоресцентного белка GFP. Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации.

Хотя такая техника удобна и полезна, её побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощрённым, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.

В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции.

Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP или фермента, катализирующего легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.

Зачем нужна генная инженерия человека

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора.

Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента.

Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества.

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах.

Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для излечения взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) — обыкновенная игрунка ( Callithrix jacchus).

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем. В 2016 в США группа учёных получила одобрение на клинические испытания метода лечения рака с помощью собственных иммунных клеток пациента, подвергаемых генной модификации с применением технологии CRISPR/Cas9.

В конце 2018 года в Китае родились двое детей, геном которых был искусственно изменён (выключен ген CCR5) на стадии эмбриона методом CRISPR/Cas9, в рамках исследований, проводимых с 2016 года по борьбе с ВИЧ. Один из родителей (отец) был ВИЧ-инфицированным, а дети, по заявлению, родились здоровыми.

Поскольку эксперимент был несанкционированным (до этого все подобные эксперименты на человеческом эмбрионе разрешались только на ранних стадиях развития с последующим уничтожением экспериментального материала, то есть без имплантации эмбриона в матку и рождением детей), ответственный за него учёный не предоставил доказательств своим заявлениям, которые были сделаны на международной конференции по редактированию генома.

В конце января 2019 года властями Китая были официально подтверждены факты проведения данного эксперимента. Тем временем учёному было запрещено заниматься научной деятельностью и он был арестован.

Как редактируют человеческий геном?

«Цинковые пальцы» встречаются и в составе человеческих белков. Благодаря этому методу можно сконструировать цепь ZFN так, что она будет узнавать определённый участок ДНК. Это дает возможность точечного воздействия на заданные участки в составе сложных геномов.

Домены «цинковые пальцы» встречаются в составе человеческих факторов транскрипции – белков, регулирующих процесс синтеза РНК с матрицей ДНК. При создании искусственных нуклеаз можно сконструировать цепочку из «цинковых пальцев» так, что она будет узнавать определенный участок ДНК.

Если такая цепочка будет достаточно длинной, она может распознавать относительно протяженные последовательности ДНК, состоящие из ряда тринуклеотидных фрагментов. Это означает реальную возможность точечного воздействия на заданные участки в составе больших сложных геномов.

Однако у метода «цинковых пальцев» обнаружились и серьезные недостатки: во-первых, это не вполне строгое распознавание тринуклеотидных повторов, что приводит к заметному числу расщеплений ДНК в «нецелевых» участках.

Во-вторых, метод оказался весьма трудозатратным и дорогостоящим, поскольку для каждой последовательности ДНК необходимо создать свою оптимизированную белковую структуру zinc-finger нуклеазы. Поэтому система «цинковые пальцы» широкого распространения не получила.

В 2011 году журнал Nature Methods назвал систему TALEN (Transcription Activator-like Effector Nucleases) «методом года» благодаря широкому спектру возможных применений в разных областях фундаментальной и прикладной науки.

TALEN — один из способов направленного внесения разрыва в ДНК с последующим его «залечиванием» — для выключения генов у мышей. Сразу после них эту технологию применили для внесения в мышиный геном мутации, приводящей к развитию одного из наследственных синдромов. Авторам метода моделирования генетически обусловленных болезней удалось не только «испортить» мышиный геном, но и исправить его обратно.

Метод обеспечивает точное воздействие на заданные участки ДНК и может быть использован практически в любой современной молекулярно-биологической лаборатории.

В основе этой системы — особые участки бактериальной ДНК — CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, или короткие палиндромные кластерные повторы). Разделяют эти повторы спейсеры — короткие фрагменты чужеродной ДНК. Последние встраиваются в геном после того, как ДНК рекомбинирует с её геномом.

Примеры редактирования человека

Заболевание 44-летнего жителя Аризоны Брайана Мадо проявилось еще в раннем детстве. Оно неизлечимо и наследуют его в основном мужчины. Мукополисахаридоз II типа — это метаболическое расстройство: у людей с ним есть мутация в гене, ответственном за производство фермента, который участвует в расщеплении сложных углеводов. В итоге они накапливаются в клетках и вызывают многочисленные патологии органов.

Мужчина решил принять участие в клиническом испытании нового метода — генной терапии. Это лишь первая фаза исследования, а всего до регистрации терапии (то есть до разрешения применять этот метод для всех больных с синдромом Хантера) их должно быть три.

Метод, который использовали в случае Брайана Мадо, позволяет редактировать геном прямо в теле человека — и при этом достаточно точно попадать в конкретный участок ДНК. Редактирование происходит с помощью так называемых «цинковых пальцев».

Китайский исследователь Хэ Цзянькуй отредактировал геномы человеческих эмбрионов перед процедурой искусственного оплодотворения, в результате чего на свет появились двое детей с измененной ДНК.

С помощью системы CRISPR/Cas9 исследователь отредактировал геномы эмбрионов семи пар во время репродуктивного лечения. В результате одной из беременностей от здоровой матери и ВИЧ-инфицированного отца родились две девочки-двойняшки с измененной ДНК. Хэ Цзянькуй пояснил, что удалил у детей ген CCR5, благодаря чему они получили пожизненный иммунитет к ВИЧ.

Для восстановления зрения можно использовать оптогенетические технологии, с помощью которых работой нейронов можно управлять с помощью светочувствительных белков бактерий и вспышек лазера.

Руководствуясь этой идеей, биологи создали вирус, который может проникать в ганглионарные нейроны. Эти нервные клетки отвечают за передачу сигналов из сетчатки в мозг человека. Попавший в ганглионарный нейрос вирус заставляет его производить подобные сигнальные молекулы. Однако эта процедура не возвращает зрение сама по себе, так как белки бактерий реагируют на свет не так, как палочки и колбочки сетчатки.

Чтобы решить эту проблему, профессор Базельского университета Ботонд Роска и профессор Питтсбургского университета Хосе Сахель создали специальные очки, которые преобразуют поступающие в них изображение в понятный мозгу формат и стимулируют ганглионарные клетки вспышками лазера. В результате пациент может видеть силуэты крупных предметов и объектов и совершать другие сложные действия

Источник

Другие люди Во что генная инженерия превратит человечество

Генная инженерия открывает перед человечеством возможности по созданию ранее не существовавших организмов и уничтожению генетических болезней. Однако все не так радужно, поскольку даже прорывная технология CRISPR/Cas9 работает далеко не идеально. Допускаемые ею ошибки могут быть редкими, но и одной достаточно, чтобы стать фатальной для человека. «Лента.ру» рассказывает о том, что не так с CRISPR и как ученые пытаются исправить ситуацию.

Система CRISPR/Cas9 — своеобразные ДНК-ножницы — по праву считается революцией в области генной инженерии. С ее помощью ученые могут редактировать человеческий геном, убирая из него вредные мутации, и лечить таким образом неприятные и смертоносные наследственные болезни. Не следует думать, однако, что раньше подобных методов не было. В арсенале у генетиков имелись, например, нуклеазы, содержащие цинковые «пальцы», и эндонуклеазы — ферменты, разрывающие молекулы ДНК в специфичных местах. В точности, универсальности и стоимости они ощутимо проигрывают CRISPR/Cas9, хотя и последняя далеко не совершенна.

Генная инженерия что сделала. Смотреть фото Генная инженерия что сделала. Смотреть картинку Генная инженерия что сделала. Картинка про Генная инженерия что сделала. Фото Генная инженерия что сделала

CRISPR/Cas9 была изначально создана не учеными, а природой. Это молекулярный механизм, существующий внутри бактерий и позволяющий им бороться с бактериофагами и другими паразитами. Фактически он работает как иммунитет против инфекции. CRISPR (расшифровывается как «короткие палиндромные повторы, регулярно расположенные группами») — это особые участки (локусы) ДНК. В них содержатся короткие фрагменты ДНК-вирусов, которые когда-то заражали предков существующих ныне бактерий, но были побеждены их внутренней защитой. Эти фрагменты называются спейсерами, они отделены друг от друга повторяющимися последовательностями.

Когда бактериофаг проникает внутрь бактерии, каждая повторяющаяся последовательность и примыкающий к ней спейсер используются в качестве шаблона для синтеза молекул, называемых crРНК. Образуется множество различных цепочек РНК, они связываются с белком Cas9, задача которого крайне проста: разрезать ДНК вируса. Однако сделать это он сможет только после того, как crРНК найдет комплементарный ей фрагмент вирусной ДНК. После того как Cas9 разрывает чужеродную нуклеиновую кислоту, последняя уничтожается до конца другими нуклеазами.

СRISPR/Cas9 хороша именно своей точностью, ведь для бактерий правильная работа иммунитета — вопрос жизни и смерти. «Антивирусной» системе нужно найти участок вирусной ДНК среди миллиона других и, главное, не спутать его со своим собственным геномом. За миллионы лет эволюции бактерии довели этот механизм до совершенства. Поэтому сразу после того, как ученые выяснили, зачем нужна CRISPR-система, они поняли, что ее можно «приручить» в качестве беспрецедентно точного инструмента редактирования генов.

Чтобы произвести замену одного специфического участка в геноме на другой, необходимо синтезировать направляющую РНК, которая по принципу действия аналогична crРНК. Она указывает Cas9, где необходимо произвести двуцепочечный разрыв в ДНК модифицируемого организма. Однако нам нужно не испортить ген, а модифицировать его — например, заменить один или несколько нуклеотидов и убрать зловредную мутацию. Тут на помощь опять приходит природа. Естественные механизмы репарации тут же начинают восстанавливать перерезанную цепочку. Фокус в том, что для этого удаляются некоторые фрагменты РНК рядом с разрывом, после чего туда вставляются похожие последовательности. Ученые могут заменить их собственными последовательностями ДНК и таким образом модифицировать геном.

Генная инженерия что сделала. Смотреть фото Генная инженерия что сделала. Смотреть картинку Генная инженерия что сделала. Картинка про Генная инженерия что сделала. Фото Генная инженерия что сделала

Схематическое изображение CRISPR

Однако нет ничего идеального. Несмотря на относительную точность, CRISPR-система иногда делает ошибки. Одна из причин лежит в самой природе системы. Бактерии невыгодно, чтобы crРНК совпадали на 100 процентов с фрагментом вирусной ДНК, который может отличаться на один-два нуклеотида. Для нее лучше, чтобы некоторые нуклеотиды могли отличаться, что дает микроорганизму больше шансов побороть инфекцию. В то же время в генной инженерии невысокая специфичность грозит ошибками: изменения могут быть внесены не там, где нужно. Если это произойдет в ходе экспериментов на мышах, то трагедии особой нет, но редактирование генома человека может обернуться катастрофой.

Этим объясняется озабоченность западных ученых экспериментами, которые проводятся в Китае. Азиатские исследователи прибегли к генным модификациям человеческих эмбрионов с помощью технологии CRISPR. Подобные опыты были запрещены в Европе и США, но недавно Великобритания разрешила их — исключительно в исследовательских целях. Такие эмбрионы должны будут уничтожаться через пару недель после получения, что исключает «выведение» ГМ-людей.

Однако CRISPR/Cas9 не была бы такой замечательной, если бы ее невозможно было усовершенствовать. Так, ученые научили Cas9 разрезать не две цепочки сразу, а только одну. Разрез вносится в двух различных местах ДНК-последовательности на разных цепях, поэтому система должна уметь распознавать в два раза больше нуклеотидов, чем обычно, что делает ее более точной.

Генная инженерия что сделала. Смотреть фото Генная инженерия что сделала. Смотреть картинку Генная инженерия что сделала. Картинка про Генная инженерия что сделала. Фото Генная инженерия что сделала

Фото: Thomas Splettstoesser / Wikipedia

Ученые из университета Западного Онтарио нашли еще один способ усовершенствовать эту технологию. Они пытались решить проблему репарации разрезанной ДНК. Быстрое восстановление нуклеиновой цепочки приводит к тому, что ученые не успевают внести в геном свои исправления. Таким образом создается порочный круг: отремонтированную нежелательным образом цепочку вновь приходится разрезать белком Cas9.

Чтобы предотвратить такую ситуацию, исследователи модифицировали «белковые ножницы», создав белок TevCas9. Он разрезает цепочку ДНК в двух местах, что затрудняет восстановление участка. Для синтеза нового фермента к Cas 9 присоединили фермент I-Tevl, который также является эндонуклеазой, то есть белком, расщепляющим молекулу ДНК в середине, а не отщепляющим концы последовательности, как это делают экзонуклеазы. Полученный гибридный белок оказался более точен в связывании со специфичными участками и с меньшей вероятностью может ошибиться и разрезать не тот участок.

Генная инженерия что сделала. Смотреть фото Генная инженерия что сделала. Смотреть картинку Генная инженерия что сделала. Картинка про Генная инженерия что сделала. Фото Генная инженерия что сделала

Кристаллическая структура Cas9, связанного с ДНК

Фото: Cas9 wiki project / Wikipedia

Повышать точность CRISPR-систем можно и другим способом. «Гонка вооружений» между бактериями и вирусами привела не только к развитию защитных систем у микроорганизмов, но и способов их обезвреживания. Так, бактериофаги быстро мутируют, лишаясь участков, по которым бактериальный иммунитет их распознает. Однако некоторые кодируют анти-CRISPR-белки, мешая работе комплекса crРНК и Cas9.

8 декабря в журнале Cell была опубликована статья ученых из Торонтского университета, которые создали «анти-CRISPR» — систему, которая позволяет выключить механизм при определенных условиях. Она позволяет предотвратить нежелательные ошибки, подавляя активность Cas9 в том случае, если направляющая РНК свяжется не с тем фрагментом. «Анти-CRISPR» состоит из трех белков, которые ингибируют нуклеазу и кодируются генами одного из бактериальных вирусов.

Уже сейчас технологию CRISPR используют для лечения таких серьезных заболеваний, как лейкоз и рак легких, а также испытывают для очистки иммунных клеток от ВИЧ. По мере того как ученые находят все новые способы совершенствования этого метода, будет открываться все больше возможностей его применения.

Источник

Генная инженерия от A до Z

Приветствую уважаемое сообщество!

Итак, это мой первый пост на хабре 🙂
Посвящен он будет серьезной теме, в которой, волею судеб, я неплохо разбираюсь. А именно, генной инженерии.

Помнится, тут пробегал пост в котором говорилось о геннотехнологической лаборатории “на коленке”. Оказалось, что тема интересна аудитории, поэтому я решил заняться ее развитием с просветительскими целями.

Я буду давать наглядные и понятные обычным людям примеры для описания сложных процессов. Если кто-то посчитает нужным меня поправить – не стесняйтесь. Я буду сознательно упускать многие вещи, но если вам кажется, что без них страдает логика изложения – так же поправляйте.

Итак, начнем. Допустим, мы хотим создать трансгенную новогоднюю елку светящуюся синим светом. Допустим, британские ученые как раз недавно открыли ген синего свечения. Вот и посмотрим на этот процесс по стадиям.

Будем вести эксперимент, как настоящие ученые. Они слышат что открыт новый ген, что же им делать дальше, если хочется создать елку?
Настоящий ученый обычно лезет в ncbi.nih.gov и по нескольким ключевым словам ищет научные публикации на эту тему. Например “синее свечение ген светится”. Типична ситуация, когда по одной из ссылок он действительно находит статью “британских ученых”, которая оказывается статьей группы китайских авторов, ни один из которых не отзывается на e-mail.
С другой стороны, в статье можно выяснить название этого гена. Пусть он будет называться ButiBl1 (названия генов принято давать буквенными обозначениями + индекс, а впереди может идти несколько первых букв названия организма из которого он выделен, их можно отбрасывать). ButiBl1, например, может быть расшифровано как Butiavka marina blue light 1 gene. Но правила здесь не строгие.

По названию гена в базе данных нуклеотидов ищут последовательность гена.Вот что примерно видит ученый на экране.

Кстати, мы можем воспользоваться инструментом BLAST и введя последовательность ДНК, получить, к каким генам она может относиться. Это тоже очень важный рутинный инструмент для генных инженеров.

Итак, мы получили последовательность гена. Очень хорошо, что дальше? Нужно ведь получить сам ген. Для этого вернемся к вопросу о том, что такое ДНК.

ДНК – это длинная молекула (очень длинная), является полимером из четырех вариантов маленьких молекул – азотистых оснований, попросту “букв”.

Я надеюсь, все это помнят, но если нужно освежить память, пожалуйста, в wiki 🙂

Итак, запомните главное:

1. ДНК – это молекула.
2. Так как это молекула, то ее не видно в микроскоп, не подцепить пинцетом и т.д. и т.п.
3. В клетке считаное количество молекул ДНК, причем если их много, то они разнородные и «собрать их пучком» чтобы подцепить пинцетом (пункт 2) тоже не получится.

Как же генные инженеры работают с молекулой ДНК если она одна и с ней невозможно провести никаких прямых манипуляций? Дело в том, что во всех процедурах происходит работа не с одной, а с множеством молекул ДНК, с тысячами и миллионами ее копий.
Тысячи таких одинаковых молекул плавают в водном растворе и этот раствор называется “препаратом ДНК”. Все манипуляции с молекулами проводятся типичными химическими методами.

То есть ученые работают не с одной молекулой, а с огромным их количеством в растворе с применением химических методов.

Как же нам получить ген bl1? Есть два способа. Первый – прямой химический синтез. Однако им не получить достаточно длинные молекулы из-за ошибок синтеза. Поясню, почему.
ДНК – это полимер. Его можно синтезировать наращивая по кирпичику, причем есть четыре кирпича разных цветов. На каждой стадии наращивания эффективность составляет порядка 99%. То есть из ста молекул одна получается неправильной. Теперь представьте, что нам нужно сделать молекулу длиной в 1000 букв? Тогда применяя банальную арифметику окажется, что доля верных молекул составит 0,99^1000=0,00004
Учитывая, что разделить верные и неверные молекулы почти невозможно, наша затея тут потерпит фиаско, и в реальных задачах синтез более 100-150 букв уже представляется малореалистичным.

Остается второй способ.

Мы выбиваем из шефа командировку на побережье Мальдивских островов, где только и водится пресловутая бутявка морская (Butiavka marina).

Ловим ее, толчем в порошок, заливаем последовательно разными химическими гадостями чтобы из всей массы тканей в растворе остались только молекулы ДНК. Конечный итог этого – препарат ДНК бутявки. Так как выделение производится из относительно большого образца, то там не одна молекула ДНК, а много – от каждой клетки по паре штук. Эта ДНК содержит не только ген bl1, но и все остальные бутявочные гены.

Этот этап называется выделением ДНК. Ее можно выделить не только в виде раствора, а переосадить и получить сухой препарат, то есть чистые молекулы ДНК.

Итак, командировка окончена, поэтому мы метнемся обратно в лабораторию где нас поджидает чудная процедура амплификации.

Смотрите, в препарате ДНК бутявки куча всяких разных генов, а не только нужный нам. Мы же можем работать только с однородными препаратами, нам нужно довести содержание молекул ДНК гена bl1 хотя бы процентов до 90.
И тут мы применяем поистине чудесный прием, являющийся краеугольным камнем современной биоинженерии, называемым полимеразной цепной реакцией или ПЦР (polymerase chain reaction, PCR). За открытие этого метода присудили нобелевскую премию, хотя до сих пор ходят споры о приоритете, поэтому фамилий не называю, кому интересно – почитайте.

Принцип полимеразной цепной реакции довольно сложен, объяснение дам очень грубое и только для того чтобы было хоть какое-то представление, за подробным – добро пожаловать по ссылке выше.

Итак, нам нужно размножить (амплифицировать) молекулы ДНК определенного гена. Для этого мы открываем страничку с последовательностью нашего гена и находим его концы. Берем 20-30 букв с конца и столько же с начала и синтезируем короткие молекулы ДНК химическим синтезом (обычно это делают специальные фирмы)

То есть мы имеем две новые пробирки. В одной из них плавает много коротких 30-буквенных последовательности ДНК, гомологичных началу гена, а во второй – то же самое, но для конца гена. Эти новые молекулы называются праймерами.

Теперь мы запускаем реакцию ПЦР, причем умножаться у нас будет участок между двумя праймерами (между начальным и концевым). Реакция ПЦР – это биохимическая циклическая реакция, требующая смены температуры. В свое время ее делали на водяных банях, теперь же используют специальные приборы – амплификаторы (они же ПЦР-машины). Их строение очень простое, там стоят элементы Пельтье, есть место для пробирок и ко всему этому присобачены электронные мозги и управляющая панель.

Генная инженерия что сделала. Смотреть фото Генная инженерия что сделала. Смотреть картинку Генная инженерия что сделала. Картинка про Генная инженерия что сделала. Фото Генная инженерия что сделала

То есть вернулись мы в лабораторию с ДНК бутявки. Заказали два праймера — к началу и к концу гена. Потом взяли чистую пробирку, капнули туда чуть-чуть ДНК, чуть чуть каждого праймера, полимеразу (фермент, который строит ДНК), нуклеотидов для строительства ДНК, и немного солей для правильной работы фермента, поставили в амплификатор на пару часов. В амплификаторе смесь то нагревалась, то остужалась и на выходе мы получили пробирку в которой плавает очень много копий ДНК нужного нам гена.

Однако пробирка прозрачная, как увидеть что там есть какая-то ДНК, да еще нужная?

Генная инженерия что сделала. Смотреть фото Генная инженерия что сделала. Смотреть картинку Генная инженерия что сделала. Картинка про Генная инженерия что сделала. Фото Генная инженерия что сделала

Существует много способов увидеть ДНК, я же опишу классический, называемый гель-электрофорезом.

В лаборатории имеется небольшая ванночка с электродами, называямая форезной камерой.
В эту ванночку заливается расплав электрофорезного геля, который по сути очень похож на мармелад. Но вместо сахара там находятся добавки солей и флуоресцентный краситель – бромистый этидий. Это вещество интересно тем, что встраивается в молекулу ДНК и в этом случае начинает светиться в ультрафиолете.

После того как гель застынет мы наносим в лунку на нем препарат ДНК где предположительно уже должно быть много копий гена bl1 и включаем электрический ток. В другую лунку наносим “маркер веса” – специальный препарат молекул ДНК, состоящий в равных долях из молекул длины 100, 200, 300 и т.д. нуклеотидов.
Молекулы ДНК полярны и движутся в электрическом поле, при этом чем они длиннее, тем сильнее цепляются за структуру геля и тем медленнее в нем движутся. Через некоторое время мы выключаем электричество и несем гель под ультрафиолетовую лампу.
На той дорожке где мы нанесли маркер веса мы видим кучу полосок. Самая дальняя от места нанесения пробы соответствует самой короткой ДНК, самая ближняя – самой длинной.
В соседних лунках ДНК бежит с одинаковой скоростью, поэтому мы сравниваем их расположение на соседних дорожках и можем определить, относительный размер.

Итак, мы обнаружили на дорожке где нанесли пробу одну светящуюся полоску и размер ее судя по соседнему маркеру веса является таким, каким мы ожидали.

Генная инженерия что сделала. Смотреть фото Генная инженерия что сделала. Смотреть картинку Генная инженерия что сделала. Картинка про Генная инженерия что сделала. Фото Генная инженерия что сделала

Мы аккуратнентко вырезаем лезвием из геля этот светящийся кусочек – он содержит много ДНК гена bl1 запутавшейся в геле и с помощью специальных манипуляций высвобождаем из него молекулы.

Можно себя поздравить, мы выделили ген bl1 из бутявки!

Я рассказал только о первой стадии этого сложного и длинного процесса. Продолжать ли дальше? Решать вам 🙂

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *