Геоинформационные технологии что это
Геоинформационная система
Геоинформационные системы (также ГИС — географическая информационная система) — системы, предназначенные для сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о представленных в ГИС объектах. Другими словами, это инструменты, позволяющие пользователям искать, анализировать и редактировать цифровые карты, а также дополнительную информацию об объектах, например высоту здания, адрес, количество жильцов.
Каталог ГИС-систем и проектов доступен на TAdviser
Содержание
По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).
ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) Шаблон:Nobr; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.
Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.
Задачи ГИС
Возможности ГИС
ГИС включают в себя возможности СУБД, редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне. ГИС позволяют решать широкий спектр задач — будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи.
Классификация ГИС
По территориальному охвату:
По уровню управления:
По предметной области:
Если помимо функциональных возможностей ГИС в системе присутствуют возможности цифровой обработки изображений, то такие системы называются интегрированными ГИС (ИГИС). Полимасштабные, или масштабно-независимые ГИС основаны на множественных, или полимасштабных представлениях пространственных объектов, обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС оперируют пространственно-временными данными.
Области применения ГИС
Сельское хозяйство
Перевозки и логистика
Перемещение людей и вещей часто сопряжено с огромными логистическими трудностями. Представьте себе больницу, которая хочет предоставить своим пациентам в определенное время лучший и самый быстрый маршрут до дома, или орган местного самоуправления, который хочет организовать оптимальные маршруты автобусов и скоростных трамваев, или производителя, который хочет как можно эффективнее и экономичнее доставлять свои продукты, или нефтяную компанию, которая планирует прокладку трубопроводов. В каждом из этих случаев для принятия бизнес-решений на основе полной информации необходим анализ данных о местополождении.
Энергетика
В разведке запасов энергоносителей для определения экономической целесообразности добычи в той или иной местности используются спутниковые фотографии, геологические карты поверхности земли и дистанционное зондирование пластов. Энергетические компании используют огромный объем географических данных, поскольку промышленные сенсоры сейчас устанавливаются везде: лазерные сенсоры на самолетах, датчики на поверхности земли при бурении скважин, мониторы трубопроводов и т. д. Картографирование и пространственный анализ дают необходимые знания для принятия решений с соблюдением требований регуляторов о выборе площадок и локализации ресурсов.
Розничная торговля
В связи с тем, что потребители все шире используют смартфоны и носимые устройства, традиционные продавцы могут использовать геопространственную технологию для получения более полной картины поведения покупателей в прошлом и настоящем. Потому что геопространственные данные не сводятся к определению местоположения, а охватывают связанные с этим положением данные, такие как демографические характеристики покупателей или информацию о том, где в магазине люди проводят больше всего времени. Все эти данные можно использовать при выборе места для магазина, определении набора товаров и их размещении и т. д.
Оборона и разведка
Геопространственная технология изменила военные и разведывательные операции в любой части мира, где размещены воинские контингенты. Командование, аналитики и другие специалисты нуждаются в точных данных ГИС для решения своих задач. ГИС помогает оценивать ситуацию (создает полное визуальное представление тактической информации), проводить операции на суше (показывает условия местности, высоты, маршруты, растительный покров, объекты и населенные пункты), в воздухе (передает данные о погоде и видимости пилотам; направляет войска и снабжение, дает целеуказание) и на море (показывает течения, высоту волн, приливы и погоду).
Федеральное правительство
Своевременная и точная геопространственная разведка имеет важнейшее значение для принятия решений федеральными агентствами, которые отвечают за охрану и безопасность, инфраструктуру, управление ресурсами и качество жизни. ГИС позволяет организовать охрану и безопасность с операционной поддержкой, координировать оборону, реагирование на природные катастрофы, действия правоохранительных органов, органов национальной безопасности и экстренных служб. Что касается инфраструктуры, то ГИС помогает управлять ресурсами и активами, предназначенными для автомагистралей, портов, общественного транспорта и аэропортов. Федеральные агентства также используют ГИС для лучшего понимания актуальных и исторических данных, необходимых для управления сельским и лесным хозяйством, горнодобывающей промышленностью, водными и другими природными ресурсами.
Местные органы власти
Местные органы ежедневно принимают решения, напрямую затрагивающие жителей и приезжих. Начиная с ремонта дорог и коммунальных услуг и заканчивая оценкой стоимости земли и развитием территорий — везде картографические приложения применяются для анализа и интерпретации данных ГИС. Кроме того, население и ландшафт городов и поселков может сильно измениться за сравнительно короткое время. Чтобы адаптироваться к этим изменениям и обеспечить людям тот уровень обслуживания, которого они ожидают, местные органы власти широко применяют современную технологию ГИС для наблюдения за дорожным движением и дорожными условиями, качеством окружающей среды, распространением заболеваний, распределением предприятий коммунального хозяйства (например, электро- и водоснабжения и канализации), для управления парками и другими общественными участками земли, а также для выдачи разрешений на создание кемпингов, на охоту, рыбалку и т. д.
Структура ГИС
ГИС-система включает в себя пять ключевых составляющих:
История ГИС
Пионерский период (поздние 1950е — ранние 1970е гг.)
Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.
Период государственных инициатив (нач. 1970е — нач. 1980е гг.)
Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:
Период коммерческого развития (ранние 1980е — настоящее время)
Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.
Пользовательский период (поздние 1980е — настоящее время)
Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.
Структура ГИС
Вопросы на которые может ответить ГИС
ГИС в России
Наибольшее распространение в России имеют программные продукты ArcGIS и ArcView компании ESRI, семейство продуктов GeoMedia корпорации Intergraph и MapInfo Professional компании Pitney Bowes MapInfo.Шаблон:Источник?
Используются также другие программные продукты отечественной и зарубежной разработки: Bentley’s MicroStation, IndorGIS, STAR-APIC, Zulu, ДубльГИС и пр.
Рынок ГИС России
Программные продукты ГИС
Геоинформационные технологии что это
Геоинформационные системы и технологии
В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими технологиями.
Близкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и построении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа местности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регистрацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.
Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важную роль играет их пространственное положение, форма и взаиморасположение. Следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД.
ГИТ, так же как и любая другая технология, ориентирована на решение определенного круга задач. Поскольку области применения ГИС достаточно широки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, решаемых в каждой из них, и особенностей, связанных с конкретным классом решаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то единой ГИС-технологии достаточно проблематично.
Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рассматривать как базовые. Они различаются в конкретных реализациях только деталями, например, программным сервисом сканирования и постсканерной обработки, возможностями геометрического преобразования исходного изображения в зависимости от исходных требований и качества материала и т.д.
Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде случаев могут отсутствовать.
По результатам анализа обобщенной модели ГИС-технологии можно выделить следующие базовые операции ГИТ:
Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Полученные цифровые массивы данных поступают в комплекс технических средств обработки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной информации и создания цифровой тематической карты.
Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вывода на фотоноситель и т.д.
Исходные и обработанные цифровые данные хранятся в подсистеме архивного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.
Области применения ГИТ в настоящее время чрезвычайно многообразны.
Прежде всего, это различные кадастры, системы управления распределенным хозяйством и инфраструктурой. Здесь развиты специализированные приложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопроводного хозяйства большого химического завода, земельного кадастра, оперирующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории
и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных маршрутов и оптимизации перевозок, распределения сети ресурсов и услуг (складов, магазинов, станций скорой помощи, пунктов проката автомобилей).
Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей среды. Здесь также встречаются как комплексные системы, так и специализированные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологических последствий разработок и т.п. В геологических применениях, как и в экологических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моделирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсморазведки и весьма специфическое и развитое ПО по их обработке и анализу. Велика потребность в комплексных решениях, увязывающих собственно геологические и иные проблемы, что невозможно решить без привлечения универсальных ГИС.
Отдельно следует выделить сугубо транспортные задачи. Среди них: планирование новых маршрутов транспорта и оптимизация процесса перевозок с возможностью учета распределения ресурсов и меняющейся транспортной обстановки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно базирующиеся на спутниковых системах навигации с использованием цифровой картографии.
Анализ существующего на сегодняшний день опыта применения ГИТ показывает, что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.
Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих различных точек зрения:
ГИС с развитыми аналитическими возможностями близки к системам статистического анализа и обработки данных, причем в ряде случаев они интегрированы в единые системы, например:
имплантация в современную ГИС ARC/INFO мощного статистического пакета S-PLUS;
добавление некоторых возможностей пространственной статистики и картографической визуализации в массовые статистические пакеты (SYSTATfor Windows);
Наиболее развитые ГИС (обычно с сильной поддержкой и растровой модели), имеющие хорошие средства программирования, широко используются для моделирования природных и техногенных процессов, в том числе распространения загрязнений, лесных пожаров и др. Некоторые обычные СУБД, работающие в графических средах типа MS Windows, также включают в себя простейшие средства картографической визуализации.
Наличие широкого спектра тенденций развития в разных областях информационных технологий, интересы которых сходятся в области ГИТ, а также появление универсальных пакетов широкого применения привело к тому, что границы определения ГИТ становятся менее четкими. Поэтому в настоящее время сложилось понятие полнофункциональная ГИС (full GIS).
Полнофункциональная ГИС должна обеспечивать:
Помимо полнофункциональных ГИС общего назначения, выделяют специализированные, которые часто имеют нечеткие границы со специализированными пакетами, не являющимися в этом смысле ГИС. Например, ГИС, ориентированные на задачи планирования связи, транспортные и навигационные задачи, задачи инженерных изысканий и проектирования сооружений.
Топологические векторные структуры данных по своей природе сложны, а процессы их использования требуют интенсивных расчетов, существенно больших, чем работа с обычной векторной графикой, в том числе и в части операций с плавающей точкой. Серьезные приложения часто требуют работы с длинными целыми и действительными числами двойной точности. Для работы с ГИС нужны дисплеи высокого разрешения и быстрый графический адаптер или акселератор, причем требования к палитре жестче, чем в САПР. Они скорее аналогичны требованиям к издательским системам профессиональной полиграфии. Особенно высокие требования к скорости отрисовки предъявляет типичная для ГИС (и менее типичная для САПР) задача заливки штриховками большого числа замкнутых многоугольников (полигонов) сложной формы.
Серьезные проекты с использованием ГИС требуют работы с большими объемами данных, от сотен мегабайт до нескольких десятков гигабайт. Особенно высокие требования к объемам дисковой и основной памяти, а также к быстродействию компьютера, предъявляют ГИС с обработкой изображения в виде растровых структур, например, в задачах геометрической коррекции аэроснимков, моделирования природных процессов и при работе с рельефом земной поверхности. Один цветной аэроснимок высокого разрешения стандартного формата, если перевести его в цифровую форму без потери «точности» (24 bit, 1200 dpi) занимает около 200 Мб. Во многих задачах регионального характера требуется использовать совмещенную и геометрически откорректированную мозаику из мйогих таких снимков, тем более, что признано целесообразным использовать растровую подложку из такой мозаики аэро- или космических снимков (digital orthophoto) в качестве базового слоя для векторных карт, т.е. фотоснимки «впечатываются» в изображение карты. То же замечание справедливо и для работы с аэрокосмическими снимками, которые, как правило, должны обрабатываться различными способами, чтобы избирательно выделить на них различную информацию (операции различного рода фильтрации, преобразования контраста, операции с использованием быстрого преобразования Фурье, классификационные алгоритмы, дискриминантный, кластерный и факторный анализ, а также метод главных компонент). Поэтому вместо того, чтобы хранить десятки версий обработки, что потребовало бы до сотен Гбайт на 1 кадр, рациональнее
выполнять их по требованию. Современные специализированные рабочие станции справляются с такой задачей, для ПК же она еще трудна. Иногда операция с одним кадром на ПК длится несколько минут. Когда необходимо моделировать сложные природные процессы, в частности распространение загрязнения, лесных пожаров, либо применять данные аэрокосмических съемок, использование специализированной рабочей станции неизбежно.
Следует отметить, что скорость накопления объемов аэрокосмических (особенно космических) данных пока идет в том же темпе или даже опережает темпы роста вычислительных мощностей ПК и рабочих станций. Действительно, ежемесячно над каждым участком Земли размером с большой город собирается не менее 800-1000 Мбайт спутниковых изображений. И если даже учесть, что половина их по условиям облачности непригодна для использования в ГИТ- приложениях, все равно это составляет огромный поток. И еще одно замечание: разрешение систем сбора дистанционной информации постоянно растет, а увеличение геометрического разрешения на местности с 20 до 10 м увеличивает объем данных в 4 раза. Так что каждые 2-4 года компьютерная система должна в несколько раз увеличивать свою производительность, чтобы не отстать от темпов развития устройств сбора информации. Отсюда ясно, что еще длительное время технической основой мощных полнофункциональных ГИС с аналитическими функциями будут оставаться специализированные рабочие станции.
Еще одним моментом, который обуславливает необходимость обращения существенного внимания к рабочим WVZY-станциям является тот факт, что сегодня основные пакеты наиболее «серьезных» ГИС еще не переведены на ПК.
Основными направлениями использования ПК при работе с ГИС в настоящее время являются:
Так как современные ГИС представляют собой, как правило, сложные программно-информационные комплексы, разработанные специально для применения в конкретных областях информационной деятельности или для решения специализированных задач, то в их состав входят:
К модулям тематической обработки данных относятся:
Геоинформационные технологии что это
Геоинформационные системы и технологии
В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими технологиями.
Близкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и построении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа местности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регистрацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.
Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важную роль играет их пространственное положение, форма и взаиморасположение. Следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД.
ГИТ, так же как и любая другая технология, ориентирована на решение определенного круга задач. Поскольку области применения ГИС достаточно широки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, решаемых в каждой из них, и особенностей, связанных с конкретным классом решаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то единой ГИС-технологии достаточно проблематично.
Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рассматривать как базовые. Они различаются в конкретных реализациях только деталями, например, программным сервисом сканирования и постсканерной обработки, возможностями геометрического преобразования исходного изображения в зависимости от исходных требований и качества материала и т.д.
Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде случаев могут отсутствовать.
По результатам анализа обобщенной модели ГИС-технологии можно выделить следующие базовые операции ГИТ:
Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Полученные цифровые массивы данных поступают в комплекс технических средств обработки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной информации и создания цифровой тематической карты.
Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вывода на фотоноситель и т.д.
Исходные и обработанные цифровые данные хранятся в подсистеме архивного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.
Области применения ГИТ в настоящее время чрезвычайно многообразны.
Прежде всего, это различные кадастры, системы управления распределенным хозяйством и инфраструктурой. Здесь развиты специализированные приложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопроводного хозяйства большого химического завода, земельного кадастра, оперирующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории
и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных маршрутов и оптимизации перевозок, распределения сети ресурсов и услуг (складов, магазинов, станций скорой помощи, пунктов проката автомобилей).
Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей среды. Здесь также встречаются как комплексные системы, так и специализированные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологических последствий разработок и т.п. В геологических применениях, как и в экологических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моделирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсморазведки и весьма специфическое и развитое ПО по их обработке и анализу. Велика потребность в комплексных решениях, увязывающих собственно геологические и иные проблемы, что невозможно решить без привлечения универсальных ГИС.
Отдельно следует выделить сугубо транспортные задачи. Среди них: планирование новых маршрутов транспорта и оптимизация процесса перевозок с возможностью учета распределения ресурсов и меняющейся транспортной обстановки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно базирующиеся на спутниковых системах навигации с использованием цифровой картографии.
Анализ существующего на сегодняшний день опыта применения ГИТ показывает, что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.
Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих различных точек зрения:
ГИС с развитыми аналитическими возможностями близки к системам статистического анализа и обработки данных, причем в ряде случаев они интегрированы в единые системы, например:
имплантация в современную ГИС ARC/INFO мощного статистического пакета S-PLUS;
добавление некоторых возможностей пространственной статистики и картографической визуализации в массовые статистические пакеты (SYSTATfor Windows);
Наиболее развитые ГИС (обычно с сильной поддержкой и растровой модели), имеющие хорошие средства программирования, широко используются для моделирования природных и техногенных процессов, в том числе распространения загрязнений, лесных пожаров и др. Некоторые обычные СУБД, работающие в графических средах типа MS Windows, также включают в себя простейшие средства картографической визуализации.
Наличие широкого спектра тенденций развития в разных областях информационных технологий, интересы которых сходятся в области ГИТ, а также появление универсальных пакетов широкого применения привело к тому, что границы определения ГИТ становятся менее четкими. Поэтому в настоящее время сложилось понятие полнофункциональная ГИС (full GIS).
Полнофункциональная ГИС должна обеспечивать:
Помимо полнофункциональных ГИС общего назначения, выделяют специализированные, которые часто имеют нечеткие границы со специализированными пакетами, не являющимися в этом смысле ГИС. Например, ГИС, ориентированные на задачи планирования связи, транспортные и навигационные задачи, задачи инженерных изысканий и проектирования сооружений.
Топологические векторные структуры данных по своей природе сложны, а процессы их использования требуют интенсивных расчетов, существенно больших, чем работа с обычной векторной графикой, в том числе и в части операций с плавающей точкой. Серьезные приложения часто требуют работы с длинными целыми и действительными числами двойной точности. Для работы с ГИС нужны дисплеи высокого разрешения и быстрый графический адаптер или акселератор, причем требования к палитре жестче, чем в САПР. Они скорее аналогичны требованиям к издательским системам профессиональной полиграфии. Особенно высокие требования к скорости отрисовки предъявляет типичная для ГИС (и менее типичная для САПР) задача заливки штриховками большого числа замкнутых многоугольников (полигонов) сложной формы.
Серьезные проекты с использованием ГИС требуют работы с большими объемами данных, от сотен мегабайт до нескольких десятков гигабайт. Особенно высокие требования к объемам дисковой и основной памяти, а также к быстродействию компьютера, предъявляют ГИС с обработкой изображения в виде растровых структур, например, в задачах геометрической коррекции аэроснимков, моделирования природных процессов и при работе с рельефом земной поверхности. Один цветной аэроснимок высокого разрешения стандартного формата, если перевести его в цифровую форму без потери «точности» (24 bit, 1200 dpi) занимает около 200 Мб. Во многих задачах регионального характера требуется использовать совмещенную и геометрически откорректированную мозаику из мйогих таких снимков, тем более, что признано целесообразным использовать растровую подложку из такой мозаики аэро- или космических снимков (digital orthophoto) в качестве базового слоя для векторных карт, т.е. фотоснимки «впечатываются» в изображение карты. То же замечание справедливо и для работы с аэрокосмическими снимками, которые, как правило, должны обрабатываться различными способами, чтобы избирательно выделить на них различную информацию (операции различного рода фильтрации, преобразования контраста, операции с использованием быстрого преобразования Фурье, классификационные алгоритмы, дискриминантный, кластерный и факторный анализ, а также метод главных компонент). Поэтому вместо того, чтобы хранить десятки версий обработки, что потребовало бы до сотен Гбайт на 1 кадр, рациональнее
выполнять их по требованию. Современные специализированные рабочие станции справляются с такой задачей, для ПК же она еще трудна. Иногда операция с одним кадром на ПК длится несколько минут. Когда необходимо моделировать сложные природные процессы, в частности распространение загрязнения, лесных пожаров, либо применять данные аэрокосмических съемок, использование специализированной рабочей станции неизбежно.
Следует отметить, что скорость накопления объемов аэрокосмических (особенно космических) данных пока идет в том же темпе или даже опережает темпы роста вычислительных мощностей ПК и рабочих станций. Действительно, ежемесячно над каждым участком Земли размером с большой город собирается не менее 800-1000 Мбайт спутниковых изображений. И если даже учесть, что половина их по условиям облачности непригодна для использования в ГИТ- приложениях, все равно это составляет огромный поток. И еще одно замечание: разрешение систем сбора дистанционной информации постоянно растет, а увеличение геометрического разрешения на местности с 20 до 10 м увеличивает объем данных в 4 раза. Так что каждые 2-4 года компьютерная система должна в несколько раз увеличивать свою производительность, чтобы не отстать от темпов развития устройств сбора информации. Отсюда ясно, что еще длительное время технической основой мощных полнофункциональных ГИС с аналитическими функциями будут оставаться специализированные рабочие станции.
Еще одним моментом, который обуславливает необходимость обращения существенного внимания к рабочим WVZY-станциям является тот факт, что сегодня основные пакеты наиболее «серьезных» ГИС еще не переведены на ПК.
Основными направлениями использования ПК при работе с ГИС в настоящее время являются:
Так как современные ГИС представляют собой, как правило, сложные программно-информационные комплексы, разработанные специально для применения в конкретных областях информационной деятельности или для решения специализированных задач, то в их состав входят:
К модулям тематической обработки данных относятся: