Герцы в электричестве что это

Почему в электроэнергетике выбран стандарт частоты 50 герц

Почему по сей день в энергетической отрасли для передачи и распределения электроэнергии всюду выбраны и остаются принятыми частоты 50 и 60 Гц? Вы когда-нибудь задумывались об этом? А ведь это совсем не случайно.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

В странах Европы и СНГ принят стандарт 220-240 вольт 50 герц, в североамериканских странах и в США — 110-120 вольт 60 Гц, а в Бразилии 120, 127 и 220 вольт 60 Гц. Кстати, непосредственно в США в розетке порой может оказаться, скажем, 57 или 54 Гц. Откуда эти цифры?

Давайте обратимся к истории, чтобы разобраться в данной теме. Во второй половине XIX века ученые многих стран мира активно изучали электричество и искали ему практическое применение. Томас Эдисон изобрел свою первую лампочку, внедрив тем самым электрическое освещение. Возводились первые электростанции постоянного тока. Начало электрификации в США.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Первые лампы были дуговыми, они светились электрическим разрядом, горящим на открытом воздухе, зажигаемым между двумя угольными электродами. Экспериментаторы того времени довольно быстро установили, что именно при 45 вольтах дуга становится более устойчивой, однако для безопасного зажигания, последовательно с лампой подключали резистивный балласт, на котором падало в процессе работы лампы около 20 вольт.

Так, долгое время применялось постоянное напряжение 65 вольт. Затем его повысили до 110 вольт, чтобы можно было последовательно включить в сеть сразу две дуговые лампы.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Эдисон был фанатичным сторонником систем постоянного тока, и генераторы постоянного тока Эдисона поначалу так и работали, подавая в потребительские сети 110 вольт постоянного напряжения.

Но технология постоянного тока Эдисона была очень-очень затратной, экономически не выгодной: нужно было прокладывать много толстых проводов, да и передача от электростанции до потребителя не превышала расстояния в несколько сотен метров, поскольку потери при передаче были огромны.

Позже была введена трехпроводная система постоянного тока на 220 вольт (две параллельные линии по 110 вольт), однако существенно положение относительно экономичности такой передачи не улучшилось.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Позже Никола Тесла разработал свои, совершенно новаторские генераторы переменного тока, и внедрил экономически более эффективную систему передачи электроэнергии при высоком напряжении в несколько тысяч вольт, и электроэнергию можно стало передавать на тысячи метров, потери при передаче снизились в десятки раз. Постоянный ток Эдисона не выдержал конкуренции с переменным током Тесла.

Трансформаторы на железе понижали высокое напряжение до 127 вольт на каждой из трех фаз, подавая его потребителю в виде переменного тока. При работе генераторов переменного тока, приводимых в движение паром или падающей водой, роторы их вращались с частотой от 3000 оборотов в минуту и даже больше.

Это позволяло лампам не мерцать, асинхронным двигателям нормально работать, выдерживая номинальные обороты, а трансформаторам — преобразовывать электричество, повышать и понижать напряжение.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Между тем, в СССР напряжение сетей до 60-х годов оставалось на уровне 127 вольт, затем с ростом производственных мощностей его подняли до привычных нам теперь 220 вольт.

Доливо-Добровольский, так же как и Тесла, исследовавший возможности переменного тока, предложил использовать для передачи электроэнергии именно синусоидальный ток, а частоту предложил установить в пределах от 30 до 40 герц. Позже сошлись на 50 герцах в СССР и на 60 герцах — в США. Эти частоты были оптимальными для оборудования переменного тока, во всю работавшего на многих заводах.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Частота вращения двухполюсного генератора переменного тока составляет 3000 либо максимум 3600 оборотов в минуту, и дает как раз частоты 50 и 60 Гц при генерации. Для нормальной работы генератора переменного тока, частота должна быть не менее 50-60 Гц. Промышленные трансформаторы без проблем преобразуют переменный ток данной частоты.

Источник

Период и частота переменного тока

Под этим термином «переменный электрический ток» следовало бы понимать ток, изменяющийся во времени любым образом, соответственно введенному в математику понятию «переменная величина».

Однако в электротехнику термин «переменный электрический ток» вошел в значении электрического тока, вменяющегося по направлению (в противовес электрическому току постоянного направления), а следовательно, и по величине, так как физически нельзя представлять себе изменения электрического тока по направлению без соответствующих изменений по величине.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Движение электронов в проводе сначала в одну сторону, а затем в другую называют одним колебанием переменного тока. За первым колебанием следует второе, затем третье и т. д. При колебаниях тока в проводе вокруг него происходит соответствующее колебание магнитного поля.

Время одного колебания называют периодом и обозначают буквой Т. Период выражают в секундах или в единицах, составляющих доли секунды.

Важной величиной, характеризующей переменный ток, является частота. Она представляет собой число колебаний или число периодов в секунду и обозначается буквой f или F.

Единицей частоты служит герц, названный в честь немецкого ученого Г. Герца и обозначаемый сокращенно буквами Гц (или Hz). Если в одну секунду происходит одно полное колебание, то частота равна одному герцу.

Когда в течение секунды совершается десять колебаний, то частота составляет 10 Гц. Частота и период являются обратными величинами:

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

При частоте 10 Гц период равен 0,1 с. А если период равен 0,01 с, то частота составляет 100 Гц.

Частота — важнейшая характеристика переменного тока. Электрические машины и аппараты переменного тока могут нормально работать только на той частоте, на которую они рассчитаны.

Параллельная работа электрических генераторов и станций на общую сеть возможна только на одной и той же частоте. Поэтому во всех странах частота переменного тока, производимого электростанциями, стандартизуется законом.

В электрической сети переменного тока частота равна 50 Гц. Ток пятьдесят раз в секунду идет в одну сторону и пятьдесят раз в обратную. Сто раз в секунду он достигает амплитудного значения и сто раз становится равным нулю, т. е. сто раз меняет свое направление при переходе через нулевое значение.

Лампы, включенные в сеть, сто раз в секунду притухают и столько же раз вспыхивают ярче, но глаз этого не замечает, благодаря зрительной инерции, т. е. способности сохранять полученные впечатления около 0,1 с.

При расчетах с переменными токами пользуются также угловой частотой, она равна 2пиf или 6,28f. Ее следует выражать не в герцах, а в радианах в секунду.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

В современных генераторах переменного тока вращается их магнитная система, а проводники, в которых индуктируется э.д.с, размещаются в неподвижной части машины.

Переменные токи принято разделять по частоте. Токи с частотой меньше 10000 Гц называют токами низкой частоты (токами НЧ).

У этих токов частота соответствует частоте различных звуков человеческого голоса или музыкальных инструментов, и поэтому они иначе называются токами звуковой частоты (за исключением токов с частотой ниже 20 Гц, которые не соответствуют звуковым частотам). В радиотехнике токи НЧ имеют большое применение, особенно в радиотелефонной передаче.

Однако главную роль в радиосвязи выполняют переменные токи с частотой более 10000 Гц, называемые токами высокой частоты, или радиочастоты (токи ВЧ).

Для измерения частоты этих токов применяют единицы: килогерц (кГц), равный тысяче герц, мегагерц (МГц), равный миллиону герц, и гигагерц (ГГц), равный миллиарду герц. Иначе килогерц, мегагерц и гигагерц обозначают kHz, MHz, GHz. Токи частотой в сотни мегагерц и выше называют токами сверхвысокой или ультравысокой частоты (СВЧ и УВЧ).

Радиостанции работают с помощью переменных токов ВЧ, имеющих частоту от сотен килогерц и выше. В современной радиотехнике для специальных целей применяются токи с частотой в миллиарды герц и имеются приборы, позволяющие точно измерять такие сверхвысокие частоты.

Источник

Частота электрического тока — определение, физический смысл

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.

Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

В республиках бывшего СССР стандартной считается частота тока в 50 Гц.

Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока:

Источник

На что влияет частота тока

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что этоДля электроэнергии основные показатели качества: напряжение и частота, для тепловой энергии: давление, температура пара и горячей воды. Частота связана с активной мощностью (Р), а напряжение с реактивной мощностью (Q).

где: n — число оборотов в минуту, f — частота тока в сети, p — число пар полюсов.

На рис. 1 представлены относительные статические характеристики нагрузки для энергосистемы по частоте.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Анализ зависимостей на рис.1 показывает, что при уменьшении частоты снижается число оборотов двигателя, снижается производительность машин и механизмов.

1. Текстильная фабрика дает брак при изменении частоты от номинальной, т к. изменяется скорость движения нити и станки дают брак.

2. Насосы (питательные), вентиляция (дымососы) тепловых электростанций зависят от числа оборотов: давление пропорционально « n 2 », потребляемая мощность « n 3 », где n — число оборотов в минуту;

3. Активная мощность нагрузки синхронных двигателей пропорциональна частоте (при снижении частоты на 1%, активная мощность нагрузки синхронного двигателя уменьшается на 1%);

4. Активная мощность нагрузки асинхронных двигателей уменьшается на 3% при снижении частоты на 1%;

5. Для энергосистемы снижение частоты на 1% приводит к уменьшению суммарной мощности нагрузки на 1-2%.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Изменение частоты влияет на работу самих электростанций. Каждая турбина рассчитана на определенное число оборотов, то есть при падении частоты снижается вращающий момент турбины. Падение частоты влияет на собственные нужды электростанции и в результате может наступить нарушение работы агрегатов станции.

Если f =50 Гц, критическая частота при которой производительность основных механизмов собственных нужд электростанций снижается до нуля и наступает лавина частоты — 45 — 46 Гц.

При падении частоты снижается э.д.с. генератора (т.к. понижается скорость возбудителя) и снижается напряжение в сети.

Почему по сей день в энергетической отрасли для передачи и распределения электроэнергии всюду выбраны и остаются принятыми частоты 50 и 60 Гц? Вы когда-нибудь задумывались об этом? А ведь это совсем не случайно.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

В странах Европы и СНГ принят стандарт 220-240 вольт 50 герц, в североамериканских странах и в США — 110-120 вольт 60 Гц, а в Бразилии 120, 127 и 220 вольт 60 Гц. Кстати, непосредственно в США в розетке порой может оказаться, скажем, 57 или 54 Гц. Откуда эти цифры?

Давайте обратимся к истории, чтобы разобраться в данной теме. Во второй половине XIX века ученые многих стран мира активно изучали электричество и искали ему практическое применение. Томас Эдисон изобрел свою первую лампочку, внедрив тем самым электрическое освещение. Возводились первые электростанции постоянного тока. Начало электрификации в США.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Первые лампы были дуговыми, они светились электрическим разрядом, горящим на открытом воздухе, зажигаемым между двумя угольными электродами. Экспериментаторы того времени довольно быстро установили, что именно при 45 вольтах дуга становится более устойчивой, однако для безопасного зажигания, последовательно с лампой подключали резистивный балласт, на котором падало в процессе работы лампы около 20 вольт.

Так, долгое время применялось постоянное напряжение 65 вольт. Затем его повысили до 110 вольт, чтобы можно было последовательно включить в сеть сразу две дуговые лампы.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Эдисон был фанатичным сторонником систем постоянного тока, и генераторы постоянного тока Эдисона поначалу так и работали, подавая в потребительские сети 110 вольт постоянного напряжения.

Но технология постоянного тока Эдисона была очень-очень затратной, экономически не выгодной: нужно было прокладывать много толстых проводов, да и передача от электростанции до потребителя не превышала расстояния в несколько сотен метров, поскольку потери при передаче были огромны.

Позже была введена трехпроводная система постоянного тока на 220 вольт (две параллельные линии по 110 вольт), однако существенно положение относительно экономичности такой передачи не улучшилось.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Позже Никола Тесла разработал свои, совершенно новаторские генераторы переменного тока, и внедрил экономически более эффективную систему передачи электроэнергии при высоком напряжении в несколько тысяч вольт, и электроэнергию можно стало передавать на тысячи метров, потери при передаче снизились в десятки раз. Постоянный ток Эдисона не выдержал конкуренции с переменным током Тесла.

Трансформаторы на железе понижали высокое напряжение до 127 вольт на каждой из трех фаз, подавая его потребителю в виде переменного тока. При работе генераторов переменного тока, приводимых в движение паром или падающей водой, роторы их вращались с частотой от 3000 оборотов в минуту и даже больше.

Это позволяло лампам не мерцать, асинхронным двигателям нормально работать, выдерживая номинальные обороты, а трансформаторам — преобразовывать электричество, повышать и понижать напряжение.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Между тем, в СССР напряжение сетей до 60-х годов оставалось на уровне 127 вольт, затем с ростом производственных мощностей его подняли до привычных нам теперь 220 вольт.

Доливо-Добровольский, так же как и Тесла, исследовавший возможности переменного тока, предложил использовать для передачи электроэнергии именно синусоидальный ток, а частоту предложил установить в пределах от 30 до 40 герц. Позже сошлись на 50 герцах в СССР и на 60 герцах — в США. Эти частоты были оптимальными для оборудования переменного тока, во всю работавшего на многих заводах.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Частота вращения двухполюсного генератора переменного тока составляет 3000 либо максимум 3600 оборотов в минуту, и дает как раз частоты 50 и 60 Гц при генерации. Для нормальной работы генератора переменного тока, частота должна быть не менее 50-60 Гц. Промышленные трансформаторы без проблем преобразуют переменный ток данной частоты.

Сегодня принципиально можно повысить частоту передачи электроэнергии до многих килогерц, и сэкономить таким образом на материалах проводников в ЛЭП, однако инфраструктура остается приспособленной именно для тока частотой 50 Гц, она была так спроектирована изначально по всему миру, генераторы на атомных электростанциях вращаются с все той же частотой 3000 оборотов в минуту, имеют всё ту же пару полюсов. Поэтому модификация систем генерации, передачи и распределения электроэнергии — вопрос отдаленного будущего. Вот почему 220 вольт 50 герц остаются у нас пока стандартом.

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.

Единая энергосистема

Почти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным компонентом любой электростанции является трехфазный турбогенератор переменного тока. Три силовые обмотки генератора индуцируют линейное напряжение. Обмотки симметрично расположены по окружности генератора. Ротор генератора вращается со скоростью 3000 оборотов в минуту, а линейные напряжения сдвинуты относительно друг друга по фазе. Фазовый сдвиг постоянен и равен 120 градусам. Частота переменного тока на выходе генератора зависит скорости вращения ротора, и в номинале составляет 50 Гц.

Герцы в электричестве что это. Смотреть фото Герцы в электричестве что это. Смотреть картинку Герцы в электричестве что это. Картинка про Герцы в электричестве что это. Фото Герцы в электричестве что это

Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Именно такое напряжение (фазное 220 В) подается в жилой сектор. Линейное напряжение 380 В используется для питания мощного промышленного оборудования. Генератор выдает напряжение в несколько десятков киловольт. Для передачи электроэнергии, с целью уменьшения потерь, напряжение повышают на трансформаторных подстанциях и подают в Линии Электропередачи (далее ЛЭП). Напряжение в ЛЭП составляет от 35 кВ для линий малой протяженности, до 1200 кВ на линиях протяженностью свыше 1000 км. Напряжение повышают с целью уменьшения потерь, которые напрямую зависят от силы тока. С другой стороны, напряжение ограничивается возможностью изоляции воздуха для ЛЭП и диэлектрика кабеля для кабельных линий. Достигнув крупного потребителя (завод, населенный пункт) электроэнергия опять попадает на трансформаторную подстанцию, где трансформируется в 6–10 кВ, которые уже пригодны для передачи по подземным кабелям. У каждого многоквартирного жилого дома, или административного здания стоит трансформаторная подстанция, которая выдает на выходе предназначенные для потребителя 380 В линейного напряжения и, соответственно, 220 В фазного. В подстанцию типично заводят два или три высоковольтных кабеля, что позволяет оперативно восстановить электроснабжение, в случае повреждений на высоковольтном участке трассы. В зависимости от вида подстанции, это может происходить автоматически, полуавтоматически — по команде диспетчера с центрального пульта, и вручную — приезжает аварийка и электрик переключает рубильник. Подстанция также может выполнять функцию регулятора напряжения, переключая обмотки трансформатора, в зависимости от нагрузки. В России на подстанциях применяют схему с заземленной нейтралью, то есть нейтральный (часто называемый нулевым) провод заземлен. По зданию разводка кабеля происходит пофазно, как с целью распараллеливания нагрузки, так и с целью удешевления оборудования (счетчиков, автоматов защиты). Подстанция в сельской местности и для небольших домов представляет собой обычно трансформаторную будку или просто трансформатор внешнего исполнения. Именно поэтому, на исправление аварии в таком месте отводятся сутки. Автоматической регулировки напряжения такие подстанции не имеют, и выдают номинал обычно в часы минимальных нагрузок, в остальное время занижая напряжение.

Нормы качества для электросетей

Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие «нормы качества электрической энергии в системах электроснабжения общего назначения«.

ПараметрНоминалПредельно
Напряжение, V220V ±5%220V ±10%
Частота, Hz50 ±0,250 ±0,4
Искажения, %812
Провалы, сек330
Перенапряжения, V280380

Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории. Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973. Первая категория требует надежности 1 и временем устранения аварии 0.

Виды негативных воздействий в электросети

Все негативные воздействия в электросети делятся на провалы и перенапряжения.

Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%. Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе. Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.

Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.

Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности. На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как «свет мигнул». В подобной ситуации все незащищенное компьютерное оборудование «перезагрузится» или «зависнет».

Перенапряжения постоянные — завышенное или циклично завышенное напряжение. Обычно является следствием так называемого «перекоса фаз» — неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение. Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания… Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение — отгорание нейтрального провода, нуля. В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.

Временное перенапряжение бывает импульсным и высокочастотным.

Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.

Высокочастотное перенапряжение характеризуется наличием в силовом кабеле паразитных колебаний высокой частоты. Может нарушить работу высокочувствительной измерительной и звукозаписывающей аппаратуры.

Способы противодействия негативным воздействиям

В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.

Вид негативного воздействияСледствие негативного воздействияРекомендуемые меры защиты
Импульсный провал напряженияНарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах.Качественные блоки питания. Онлайн ИБП
Постоянный провал (занижение) напряженияПерегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения.Автотрансформаторные регуляторы напряжения. Импульсные блоки питания.
Пропадание напряженияВыключение оборудования. Потеря данных в компьютерных системах.Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования.
Завышенное напряжениеПерегрузка оборудования. Увеличение вероятности выхода из строя.Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения.
Импульсные перенапряженияНарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя.Сетевые фильтры с автоматом защиты от перенапряжения.
Высокочастотные перенапряжения.Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры.Сетевые фильтры с ФНЧ. Развязывающие трансформаторы.
Перекос фаз (разница фазного напряжения)Перегрузка трехфазного оборудования.Выравнивания нагрузки по фазам. Содержание в исправности силовой кабельной сети.
Отклонение частоты сетиНарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети.Онлайн ИБП. Замена устаревшего оборудования.

Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств. Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования. Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *