Гетерозиготная мутация что это простыми словами
Бомба замедленного действия: чем опасно носительство мутаций у будущих родителей
Когда тест на беременность показывает заветные две полоски – это очень радостное и волнительное событие. Будущие родители готовятся к тому, что с появлением малыша их жизнь заиграет новыми красками. К сожалению, не для всех пар эти мечты воплощаются в реальность. Иногда счастье сменяется болью утраты из-за того, что беременность прерывается по непонятным причинам.
Пары, пережившие такие события, часто начинают винить себя. Женщина перебирает в памяти события из своей жизни, пытается понять, что она делала неправильно, где совершила роковую ошибку, из-за которой всё это произошло. На самом деле чаще всего никто не виноват. Одна из возможных причин прерываний беременности и рождения детей с тяжелыми заболеваниями – наследственность. Генетические мутации коварны. Некоторые из них передаются по аутосомно-рецессивному типу. Катастрофа происходит, когда в клетках организма встречаются две «неправильные» копии гена. Оба родителя могут оказаться носителями. Каждый из них здоров, потому что один ген функционирует нормально. Но есть 25% вероятность, что ребенок получит оба дефектных гена. Это высокий риск.
Еще существуют наследственные заболевания, сцепленные с полом. Тут тоже довольно сложный механизм наследования. Например, если дефектный ген находится в «женской» X-хромосоме, то носительницами могут быть только женщины, а их сыновья в 50% случаев рождаются больными, в остальных 50% случаев они здоровы и не являются носителями.
Проблема в том, что такие «неправильные» гены обычно сложно выявить. У носителей нет симптомов, и они не догадываются о рисках для потомства. Зачастую это вскрывается только после нескольких прервавшихся беременностей или рождения ребенка с тяжелым заболеванием.
Случаи из нашей практики
В 2019 году в Репробанк обратилась пара, у которой было несколько потерь беременности и безуспешных попыток ЭКО. Эти люди очень хотели завести ребенка, они прошли обследование, и после тщательного обследования врач-генетик заподозрил в паре носительство одного из генетических заболеваний, относящихся к группе митохондриальной патологии.
Генетический анализ показал, что оба партнера являются носителями мутации в гене SCO2. Эта мутация связана с тяжелым заболеванием – фатальной инфантильной митохондриальной миопатией. Эта патология вызвана нарушением функции митохондрий – «клеточных электростанций», она проявляется в виде почечной недостаточности, поражения сердечной мышцы (кардиомиопатии), выраженных дыхательных нарушений, снижения мышечного тонуса, слабости, повышенного уровня молочной кислоты в крови (лактат-ацидоз).
Другая пара обратилась к нам по поводу замершей беременности на девятом месяце. Это одно из самых страшных осложнений беременности, которого сильнее всего боятся будущие мамы. Развитие плода останавливается, и он погибает. В случае с данной парой генетический анализ показал, что оба родителя являются носителями мутации, связанной со спинальной мышечной атрофией (СМА). Это наследственное заболевание может передаваться в том числе по аутосомно-рецессивному типу и характеризуется гибелью нервных клеток, ответственных за движения. Тяжелее всего протекает младенческий тип СМА: у таких детей с рождения нарушено дыхание, они не могут нормально сосать грудь, глотать, держать головку, сидеть.
Еще одна мутация, носители которой обращались в Репробанк, была связана с наследственным поликистозом почек. При этой патологии у детей примерно 90% ткани почек замещается кистами, развивается прогрессирующая почечная недостаточность. У этой пары в анамнезе было 4 потери ребенка.
Донорские половые клетки – одно из возможных решений
Для родителей, которые являются носителями одинаковых мутаций, связанных с тяжелыми наследственными заболеваниями, есть несколько решений. Вот что об этом говорит врач-генетик Александра Борисовна Тюрина:
«У партнеров, которые являются носителями мутаций в одном и том же гене, ответственном за редкую наследственную патологию, очень высок риск родить больного ребенка. Вариантов у таких семей несколько: сделать ЭКО с поиском семейной мутации у эмбриона, обследовать плод во время беременности, сделать выбор в пользу донорского материала, выбрать усыновление или отказ от деторождения вовсе. Это так называемые «reproductive options». Этот термин можно перевести как репродуктивный выбор или репродуктивные варианты. У каждого из этих вариантов есть как преимущества, так и недостатки, но нет плохого или хорошего решения. Каждая семья, столкнувшаяся с редким наследственным заболеванием, делает приемлемый для себя выбор. Репробанк помогает подобрать подходящего донора для каждой конкретной семьи и минимизировать риск рождения ребенка с наследственным заболеванием, если пара выберет этот путь».
Паре из нашего первого примера – носителям мутации SCO2 – было предложено воспользоваться донорскими половыми клетками. Для первой беременности наши специалисты оплодотворили яйцеклетку женщины донорской спермой, а для второй беременности сперматозоиды ее партнера использовали для оплодотворения донорской яйцеклетки. Оба донора были дополнительно проверены на носительство данной мутации. Теперь эта пара растит двух здоровых малышей.
«Наши стандарты отбора доноров – одни из самых строгих в мире. Донором Репробанка становится только 1 из 300 кандидатов. Мы стремимся снизить до минимума риски возникновения генетических заболеваний. В дополнение к необходимым, согласно №107н (803н) приказу, обследованиям все наши доноры обязательно проходят генетический скрининг. Многим из них проведено полноэкзомное секвенироване экзома — исследование (прочтение) всей кодирующей белок части генома.
Как итог, около 40% доноров мы отсеиваем по причине носительства того или иного частого или очень серьезного наследственного заболевания (а в некоторых случаях и нескольких одновременно). Для данной пары мы подобрали доноров спермы и яйцеклеток, не имеющих мутации в гене SCO2».
Автандил Чоговадзе, руководитель Репробанка.
Также мы могли бы предложить этой паре воспользоваться технологией предимплантационного генетического тестирования на моногенную патологию (ПГТ-М). Этот метод помог бы получить совместные эмбрионы у супругов, протестировать их и отобрать на перенос только те, что здоровы или являются здоровыми носителями. К сожалению, у этой технологии есть ряд ограничений: высокая себестоимость, значительное время для реализации. Поэтому наши пациенты отказались от этого варианта.
Все три наших примера иллюстрируют огромную роль генетических исследований при подготовке к беременности. Всем парам, планирующим завести ребенка, стоит проконсультироваться с клиническим генетиком вне зависимости от возраста, состояния здоровья и семейной истории. Это может помочь избежать трагедии в будущем.
Все доноры половых клеток в Репробанке проходят тщательное обследование, в том числе генетический скрининг. В нашем каталоге нет носителей опасных мутаций. Тем не менее, если вы решили использовать донорский материал, вам стоит пройти генетическое обследование.
Генетическое обследование
Сегодня генетическое обследование применяют в случае наличия вероятности появления какого-то генетического нарушения в семье. Данное тестирование приемлемо лишь в том случае, если структура генетического наследования нарушения достаточно изучена, возможно эффективное лечение и использованы достоверные, надежные, высокочувствительные, безвредные и специфические методики исследования. В определенном поколении преобладание должно быть весьма высоким для оправдания тех усилий, которые будут затрачены на проведение теста. Целью генетического тестирования может быть идентификация гетерозиготного носителя гена рецессивного нарушения, однако при этом не выражающего его (к примеру, у евреев ашкенази болезнь Тея-Сакса, у негров серповидно-клеточная анемия, талассемия у определенных этнических групп). Когда гетерозиготной парой выступает также гетерозигота, семья находится в зоне риска рождения нездорового ребенка.
Когда нужен тест?
Исследование может быть необходимо до того, как проявится симптоматика в том случае, когда в истории семьи была мажорирована наследовавшаяся патология, которая проявляется в более позднем возрасте (к примеру, рак молочной железы, болезнь Хантингтона). Тест определяет уровень риска развития нарушения, следовательно, человек в будущем сможет принять превентивные меры. Когда тест продемонстрировал, что человек выступает носителем нарушения, тогда он тоже может принимать решения, которые касаются рождения потомства.
Предродовой тест также может включать амниоцентез, исследование крови пуповины, взятие пробы ворсин хориона, обследование материнской крови, тест эмбрионального воплощения или материнской сыворотки. Распространенные причины для предродового обследования это:
Обследование новорожденного дает возможность осуществить профилактику (специальную диету или терапию замены) галактозного диабета, фенилпировиноградной олигофрении, а также гипотиреоза.
Также текст сегодня используют для создания семейной генеалогии. В современной генетической консультации широко используется создание семейной генеалогии (генеалогическое древо). При этом применяются условные символы, которые обозначают членов семьи и дают необходимые данные о состоянии их здоровья. Определенные семейные нарушения с похожими фенотипами обладают несколькими моделями наследования.
Митохондриальные нарушения ДНК
В митохондрии содержится уникальная округлая хромосома, которая несет информацию о тринадцати протеинах, разных РНК, а также нескольких регулятивных ферментах. Но данные о более чем 90 процентов митохондриальных протеинов есть в ядерных генах. У каждой клетки в составе есть несколько сотен митохондрий в собственной цитоплазме.
Митохондриальные нарушения часто проистекают от митохондриальных патологий или патологий ядерных ДНК (к примеру, разрушений, мутаций, дупликаций). Ткани высокой энергии (к примеру, мускулы, мозг, сердце) располагаются в зоне особенного риска нарушения функций из-за митохондриальных аномалий.
Митохондриальные патологии проявляются при множестве распространенных нарушений, к примеру, при определенных видах болезни Паркинсона (которые способны спровоцировать сильные митохондриальные делеционные мутации в тканях подкорковых узлов) и множестве других видов нарушений функционирования мышц.
Патологии митохондрии ДНК определяют наследованием со стороны матери. Митохондрии все наследуются от цитоплазмы яйцеклетки, по этой причине все потомство нездоровой матери пребывает в зоне риска наследования нарушений, однако при этом какой-либо риск наследования нарушения от больного отца отсутствует. Разнообразие клинических проявлений выступает правилом, которое способно объясняться частично вариативностью сочетаний наследованных мутаций и нормальных клеток и тканей.
Дефект одного гена
Генетические расстройства, вызванные нарушением лишь в одном гене (так называемые «менделевские нарушения»), наиболее простые для анализа и самые полно изученные на сегодняшний день. Наукой описано множество специфических нарушений подобного рода. Патологии одного гена бывают аутосомными, или сцепленными с X-хромосомой, рецессивными или доминантными.
Доминантный аутосомный признак
Лишь одна аутосомная аллель гена нужна, чтобы выразить аутосомные доминантные черты; это означает, что происходит поражение гомозиготы и гетерозиготы аномального гена.
В данном случае применимы такие правила:
1. Мужчина и женщина подвержены одинаковому риску появления болезни.
2. У больного человека будет больной родитель.
3. Здоровый ребенок больного родителя не передает черту своему потомку.
4. Здоровый родитель и гетерозиготный больной родитель обладают, в среднем, одинаковым количеством здоровых и больных детей; это означает, что вероятность развития заболевания составляет 50 процентов для каждого потомка.
Аутосомный рецессивный признак
Чтобы выразить аутосомную рецессивную черту необходимо наличие двух копий аномальной аллели. У определенных поколений процент гетерозиготных носителей является высоким по причине эффекта инициатора (то есть была начата группа несколькими людьми, из которых один был носителем) либо вследствие того, что носители обладают селективным преимуществом (к примеру, гетерозиготность в случае серповидно-клеточной болезни служит защитой от малярии).
В данном случае применимы такие правила наследования:
Когда у здоровых родителей был рожден больной ребенок, оба родителя являются гетерозиготными носителями и, в среднем, один из 4х их потомков будет болен, один из 2х гетерозиготный, а один из 4х– здоровым.
В среднем, половина детей больного человека, а также один гетерозиготный носитель подвержены заражению, в треть является гетерозиготными носителями.
Все дети двух больных родителей будут больны.
Женщины и мужчины в одинаковой степени подвержены риску заражения.
Гетерозиготные носители фенотипически нормальны, однако выступают проводниками черты. Когда черта порождена дефектом специфического белка (к примеру, энзимы), обычно гетерозиготный человек имеет ограниченное количество этого белка. Когда нарушение известно, с помощью генетических молекулярных приемов возможно проведение идентификации гетерозиготных носителей.
Родственники скорее прочих унаследуют такую же мутантную аллель, поэтому браки между близкими родственниками сильно увеличивают вероятность рождения больных детей. У пары брат-сестра или родитель-ребенок вероятность родить нездорового ребенка возрастает за счет наличия 50 процентов одинаковых генов.
Гетерозиготная мутация что это простыми словами
Мутации гена POU1F1 (OMIM#613038) являются редкой причиной множественного дефицита гормонов аденогипофиза (МДГА), который может включать дефицит соматотропного гормона (СТГ), тиреотропного гормона (ТТГ) и пролактина. Для данных пациентов характерна гипоплазия передней доли гипофиза, выявляемая при МРТ головного мозга. Встречается как аутосомно-доминантный, так и аутосомно-рецессивный тип наследования. В настоящее время в мире описано более 30 различных мутаций гена POU1F1. В статье представлен клинический случай МДГА, обусловленный новой гетерозиготной мутацией гена POU1F1, дана клиническая характеристика и описаны результаты 1-го года лечения рГР.
Описание случая
Пациент Д., 2 года 6 мес, рожден от второй беременности на 38-й неделе гестации путем кесарева сечения по поводу бихориальной биамниотической двойни. Длина тела при рождении 48 см (SDS: –1,47), масса тела 2760 г (SDS: –1,95). Второй ребенок из двойни — здоровая девочка. Брак не близкородственный, родители детей здоровы. Рост отца 176 см (SDS: +0,2), матери — 170 см (SDS: +1,33). Первая беременность — монохориальная биамнистическая, близнецы, здоровые мальчики. В настоящее время старшим мальчикам 18 лет, их рост составляет 184 см (SDS: +1,40) и 186 см (SDS: +1,70).
В роддоме на 1-й неделе жизни у пациента были выявлены рецидивирующие бессимптомные кетотические гипогликемии (гликемия 2—2,7 ммоль/л). В неонатальном периоде отмечалась задержка психомоторного развития.
К годовалому возрасту обращало на себя внимание отставание в росте. Кариотип 46, XY. Пациент был обследован эндокринологом, диагностирован вторичный гипотиреоз (ТТГ 1,33 мкМЕд/мл (норма 0,4—4,0), св. Т4 G: p. Q167R в гене POU1F1. Выявленная мутация ранее не была описана.
Возобновлена терапия левотироксином, через 2 мес начата терапия рекомбинантным гормоном роста (рГР). За 1 год лечения рост пациента увеличился на 20,1 см и составил 76,6 см, (SDS: —3,88) (см. рисунок). Отмечалась значительная прогрессия в психомоторном развитии: ребенок стал более активным, начал самостоятельно ходить. Все это время вторичный гипотиреоз был компенсирован; уровень ИФР-1 нормализовался [102,9 нг/мл (8—290)].
Рисунок. Рост пациента Д.
Обсуждение
За последние 20 лет обнаружен ряд генов, мутации в которых вызывают развитие гипопитуитаризма: ARNT2, GH1, GHRH, GHRHR, GHSR, GLI2, HESX1, LHX3, LHX4, OTX2, PAX6, POU1F1, PROP1, SHH, SOX2, SOX3.
Первое описание пациентов с мутациями в гене POU1F1 опубликовано в 1989 г. J. Wit и соавт. [1]. Авторы описали две неродственные голландские семьи, в которых 4 из 10 детей имели недостаточность гормона роста, пролактина и ТТГ. При МРТ головного мозга обнаружены нормальные размеры гипофиза. Пациенты демонстрировали хороший ответ на терапию рГР.
Частота встречаемости мутаций гена POU1F1 у пациентов с МДГА от неблизкородственных браков составляет 3—7%, а среди семейных случаев достигает 25—52% [2—4].
Белок POU1F1 является транскрипторным фактором, который регулирует развитие гипофиза у млекопитающих. Он содержит два белковых домена: POU-специфический домен и POU-гомеодомен, которые необходимы для высокоаффинного связывания с ДНК генов гормона роста (ГР) и пролактина (Прл) [5]. POU1F1 активирует экспрессию гена ГР и Прл через N-концевой домен трансактивации, богатый гидроксилированными аминокислотными остатками [6,7]. В период развития гипофиза экспрессия гена POU1F1 предшествует экспрессии гена СТГ и Прл в соматотрофах и лактотрофах соответственно и является основным клеточно-специфическим активатором экспрессии этих гормонов [8—10]. POU1F1 участвует также в регуляции генов субъединиц ТТГ. Однако в отличие от соматотрофов и лактотрофов в тиротрофах экспрессия ТТГ предшествует экспрессии этого фактора транскрипции [11]. Таким образом, POU1F1 не является клеточно-специфическим активатором экспрессии ТТГ.
К настоящему времени описано 25 рецессивных и 6 доминантных мутаций гена POU1F1, из которых 19 являются миссенс-мутациями, 5 — нонсенс-мутациями, 5 — мутациями, приводящими к сдвигу рамки считывания, 10 — крупными делециями гена и 2, которые приводят к ошибочной идентификации пре-мРНК [12—15].
Для пациентов с мутациями гена POU1F1 характерен тотальный СТГ-дефицит с крайне низкими показателями ИФР-1, вторичный гипотиреоз, который зачастую диагностируется первым из компонентов МДГА, и гипопролактинемия.
Пациенты с мутациями гена POU1F1 демонстрируют хороший ответ на терапию рГР. В 2005 г. P. James и соавт. [16] показали, что при регулярной терапии рГР SDS конечного достигнутого роста пациентов составил от –1,0 до –0,2.
В связи с тем что дифференцировка тиреотрофов нарушается внутриутробно, у детей с мутациями гена POU1F1 при рождении выявляется отставание в психомоторном развитии и, возможно, снижение интеллекта.
В 1992 г. K. Tatsumi и соавт. [5] описали 2 пациенток, рожденных от близкородственного брака, у которых был диагностирован кретинизм вследствие врожденного гипотиреоза, а также тотальный СТГ-дефицит и гипопролактинемия. При молекулярно-генетическом обследовании выявлены мутации гена POU1F1. Фенотип пациенток был характерным для врожденного гипотиреоза: одутловатое лицо, седловидный нос, низкий голос и микседема. Младшая сестра умерла от аспирационной пневмонии в возрасте 2 мес. Родители пациенток, а также 5 их братьев были здоровы.
В 1992 г. S. Radovick и соавт. [17] описали пациента с мутацией гена POU1F1 и выраженной умственной отсталостью. У пациента были диагностированы СТГ-дефицит и гипопролактинемия. Мать пациента здорова, однако другие члены семьи для обследования были недоступны.
Низкий уровень Прл у пациентов с мутациями гена POU1F1 не требует медикаментозного лечения. Однако в случае беременности и родов лактация у таких пациенток невозможна. Поражение гонадотрофов при мутациях данного гена отсутствуют, поэтому регистрируются нормальные уровни ЛГ, ФСГ и эстрадиола у женщин и тестостерона у мужчин. Пациентки способны к самостоятельным беременностям.
В литературе [2, 18] описаны семейные случаи МДГА у пациентов с мутацией гена POU1F1. Так, в 1995 г. F. De Zegher и соавт. [18] описали случай МДГА у матери и ребенка с мутацией с. 271 С>Т в гене POU1F1. Отставание в росте отмечалось у матери с раннего детства. В возрасте 7 лет ее рост составлял 80,4 см (SDS: –7,2). У пациентки был диагностирован вторичный гипотиреоз, назначена терапия левотироксином, которая регулярно корректировалась. СТГ-дефицит был диагностирован лишь в возрасте 10 лет 9 мес (максимальный стимулированный уровень СТГ 0,1 нг/мл). При МРТ головного мозга выявлена гипоплазия передней доли гипофиза. Была назначена терапия рГР. Спонтанное половое созревание произошло в возрасте 15 лет, менархе в 17 лет. В этом же возрасте впервые был выявлен низкий уровень Прл. Закрытие зон роста отмечено в 19 лет. В связи с поздним началом терапии рГР конечный рост пациентки составил 149,5 см (SDS: –2,1). В возрасте 29 лет девушка самостоятельно забеременела. При УЗИ на 33-й неделе гестации обнаружены маленькие размеры бедренной кости плода, что свидетельствует об отставании в росте. Родоразрешение путем кесарева сечения было проведено на 38-й неделе гестации в связи с тем, что у матери развился тяжелый гипотиреоз. При тотальном дефиците Прл добиться лактации не удалось. У новорожденной девочки отмечалась выраженная гипотония, открытый сагиттальный шов черепа, седловидный нос, увеличенный язык, микседема и асцит. Девочке проводилась коррекция тяжелой неонатальной гипотонии (введение допамина и/или добутамина). Несмотря на заместительную терапию левотироксином и рГР, ребенок отставал в психоневрологическом развитии. В возрасте 1 года ребенок имел нормальный рост и массу тела, однако сохранялась гипотония, выраженное косоглазие, наблюдалось нарушение фиксации внимания с плохим визуальным и слуховым контактом.
Заключение
Наш пациент имел крайне выраженное отставание в физическом развитии, что послужило поводом для раннего обращения к эндокринологу. У мальчика имелись характерные для синдрома Ларона особенности: гипогликемии в раннем возрасте, раннее и выраженное отставание в росте, преобладание мозговой части черепа над лицевой, голубые склеры. Однако наличие вторичного гипотиреоза позволило исключить данный диагноз на раннем этапе обследования.
Выраженность клинической картины и степень отставания в росте позволили в раннем возрасте заподозрить молекулярно-генетическую основу заболевания и подтвердить ее без проведения СТГ-стимуляционных проб и МРТ головного мозга (исключение объемного процесса гипоталамо-селлярной области), которая в таком возрасте возможна только под общей анестезией.
Раннее начало заместительной гормональной терапии при данном виде МДГА особенно актуально, поскольку при мутациях гена POU1F1 возможно начало спонтанного пубертата, что лимитирует время линейного роста ребенка.
Гетерозиготная мутация у данного ребенка с.500А> G: p. Q167R в гене POU1F1 ранее не была описана.
Источник финансирования. Работа выполнена при содействии Фонда поддержки и развития филантропии «КАФ».
Согласие пациента. Мать пациента добровольно подписала информированное согласие на публикацию персональной медицинской информации своего несовершеннолетнего сына в обезличенной форме в журнале «Проблемы эндокринологии».
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
Благодарности. Коллектив авторов благодарит Фонд поддержки развития филантропии «КАФ» за помощь в проведении молекулярно-генетического обследования.
Генетические нарушения у человека и методы их выявления
Генами называются участки ДНК, в которых закодирована структура всех белков в теле человека или любого другого живого организма. В биологии действует правило: «один ген – один белок», то есть в каждом гене содержится информация только об одном определенном белке.
В 1990 году большая группа ученых из разных стран начала проект под названием «Геном человека». Он завершился в 2003 году и помог установить, что человеческий геном содержит 20–25 тысяч генов. Каждый ген представлен двумя копиями, которые кодируют один и тот же белок, но могут немного различаться. Большинство генов одинаковые у всех людей – различается всего 1%.
ДНК находится в клетке внутри ядра. Она особым образом организована в виде хромосом – эти нитеподобные структуры можно рассмотреть в микроскоп с достаточно большим увеличением. Внутри хромосомы ДНК намотана на белки – гистоны. Когда гены неактивны, они расположены очень компактно, а во время считывания генетического материала молекула ДНК расплетается.
В клетках человека есть структуры, которые называются митохондриями. Они выполняют роль «электростанций» и отвечают за дыхание. Это единственные клеточные органеллы, у которых есть собственная ДНК. И в ней тоже могут возникать нарушения.
Весь набор хромосом в клетке называется кариотипом. В норме у человека он представлен 23 парами хромосом, всего их 46. Выделяют два вида хромосом:
Методы исследования хромосом
Для исследования кариотипа применяют специальный метод – световую микроскопию дифференциально окрашенных метафазных хромосом культивированных лимфоцитов периферической крови.
Этот анализ применяется для диагностики различных хромосомных заболеваний. Он позволяет выявлять такие нарушения, как:
Однако с помощью исследования кариотипа можно выявить не все генетические нарушения. Оно не способно обнаружить такие изменения, как:
Для получения дополнительной информации, не видимой в световой микроскоп, используют хромосомный микроматричный анализ (ХМА). С его помощью можно изучить все клинически значимые участки генома и выявить изменения в количестве и структуре хромосом, а именно микрополомки (микроделеции и микродупликации).
Во время хромосомного микроматричного анализа применяют технологию полногеномной амплификации и гибридизации фрагментов опытной ДНК с олигонуклеотидами, нанесенными на микроматрицу. Если объяснять простыми словами, то сначала ДНК, которую необходимо изучить, копируют, чтобы увеличить ее количество, а затем смешивают ее со специальными ДНК-микрочипами, которые помогают выявлять различные нарушения.
Эта методика позволяет в одном исследовании выявлять делеции и дупликации участков ДНК по всему геному. Разрешающая способность стандартного ХМА от 100 000 пар нуклеотидов – «букв» генетического кода (в отдельных регионах от 10 000 п. н.).
С помощью ХМА можно выявлять:
Однако, как и предыдущий метод, хромосомный микроматричный анализ имеет некоторые ограничения. Он не позволяет выявлять или ограничен в выявлении таких аномалий, как:
Мутации в генах и заболевания, к которым они способны приводить
Мутации – это изменения, которые происходят в ДНК как случайным образом, так и под действием разных факторов, например химических веществ, ионизирующих излучений. Они могут затрагивать как отдельные «буквы» генетического кода, так и большие участки генома. Мутации происходят постоянно, и это основной двигатель эволюции. Чаще всего они бывают нейтральными, то есть ни на что не влияют, не приносят ни вреда, ни пользы. В редких случаях встречаются полезные мутации – они дают организму некоторые преимущества. Также встречаются вредные мутации – из-за них нарушается работа важных белков, наоборот, происходят достаточно часто. Генетические изменения, которые происходят более чем у 1% людей, называются полиморфизмами – это нормальная, естественная изменчивость ДНК Полиморфизмы ответственны за множество нормальных отличий между людьми, таких как цвет глаз, волос и группа крови.
Все внешние признаки и особенности работы организма, которые человек получает от родителей, передаются с помощью генов. Это важнейшее свойство всех живых организмов называется наследственностью. В зависимости от того, как проявляются гены в тех или иных признаках, их делят на две большие группы.
Например, карий цвет глаз у человека является доминантным. Поэтому у кареглазых родителей с высокой вероятностью родится кареглазый ребенок. Если у одного из родителей глаза карие, а у другого голубые, то вероятность рождения кареглазых детей в такой семье тоже высока. У двух голубоглазых родителей, скорее всего, все дети тоже будут голубоглазыми. А вот у кареглазых родителей может родиться ребенок с голубыми глазами, если у обоих есть рецессивные «гены голубоглазости», и они достанутся ребенку. Конечно, это упрощенная схема, потому что за цвет глаз отвечает не один, а несколько генов, но на практике эти законы наследования зачастую работают. Аналогичным образом потомству могут передаваться и наследственные заболевания.
Как выявляют рецессивные мутации?
Для выявления мутаций, которые передаются рецессивно, используют целый ряд исследований.
Секвенирование по Сэнгеру – метод секвенирования (определения последовательности нуклеотидов, буквально – «прочтение» генетического кода) ДНК, также известен как метод обрыва цепи. Анализ используется для подтверждения выявленных мутаций. Это лучший метод для идентификации коротких тандемных повторов и секвенирования отдельных генов. Метод может обрабатывать только относительно короткие последовательности ДНК (до 300–1000 пар оснований) одновременно. Однако самым большим недостатком этого метода является большое количество времени, которое требуется для его проведения.
Если неизвестно, какую нужно выявить мутацию, то используют специальные панели.
Панель исследования — тестирование на наличие определенных мутаций, входящих в перечень конкретной панели исследования. Анализ позволяет выявить одномоментно разные мутации, которые могут приводить к генетическим заболеваниям. Анализ позволяет компоновать мутации в панели по частоте встречаемости (скрининговые панели, направленные на выявление носительства патологической мутации, часто встречаемой в данном регионе или в определенной замкнутой популяции) и по поражаемому органу или системе органов (панель «Патология соединительной ткани»). Но и у этого анализа есть ограничения. Анализ не позволяет выявить хромосомные аберрации, мозаицизм и мутации, не включенные в панель, митохондриальные заболевания, а также эпигенетические нарушения.
Не в каждой семье можно отследить все возможные рецессивные заболевания. Тогда на помощь приходит секвенирование экзома – тест для определения генетических повреждений (мутаций) в ДНК путем исследования в одном тесте практически всех областей генома, кодирующих белки, изменения которых являются причиной наследственных болезней.
Секвенирование следующего поколения-NGS – определение последовательности нуклеотидов в геномной ДНК или в совокупности информационных РНК (транскриптоме) путем амплификации (копирования) множества коротких участков генов. Это разнообразие генных фрагментов в итоге покрывает всю совокупность целевых генов или, при необходимости, весь геном.
Анализ позволяет выявить точечные мутации, вставки, делеции, инверсии и перестановки в экзоме. Анализ не позволяет выявить большие перестройки; мутации с изменением числа копий (CNV); мутации, вовлеченные в трехаллельное наследование; мутации митохондриального генома; эпигенетические эффекты; большие тринуклеотидные повторы; рецессивные мутации, связанные с Х-хромосомой, у женщин при заболеваниях, связанных с неравномерной Х-деактивацией, фенокопии и однородительские дисомии, и гены, имеющие близкие по структуре псевдогены, могут не распознаваться.
Что делать, если в семье есть наследственное заболевание?
Существуют два способа выявить наследственные генетические мутации у эмбриона:
Предимплантационное генетическое тестирование (ПГТ) в цикле ЭКО. Это диагностика генетических заболеваний у эмбриона человека перед имплантацией в слизистую оболочку матки, то есть до начала беременности. Обычно для анализа проводится биопсия одного бластомера (клетки зародыша) у эмбриона на стадии дробления (4–10 бластомеров). Существует несколько видов ПГТ: на хромосомные отклонения, на моногенные заболевания и на структурные хромосомные перестройки. Данные Simon с соавторами (2018) говорят о том, что в случае проведения ЭКО с ПГТ у пациентки 38–40 лет результативность ЭКО составляет 60%. Но при исследовании эмбриона есть ряд ограничений. Так, из-за ограниченного числа клеток можно не определить мозаицизм.
Если нет возможности провести ЭКО с ПГТ, то используют второй вариант – исследование плодного материала во время беременности.
Для забора плодного материала используют инвазивные методы:
Далее эти клетки исследуют при помощи одного или нескольких генетических тестов (которые имеют свои ограничения). Проведение инвазивных методов может быть связано с риском для беременности порядка 1%.
Таким образом, проведя дополнительные исследования, можно значительно снизить риск рождения ребенка с генетическим заболеванием в конкретной семье. Но привести этот риск к нулю на сегодняшний день, к сожалению, невозможно, так как любой генетический тест имеет ряд ограничений, что делает невозможным исключить абсолютно все генетические болезни.
Автор статьи
Пелина Ангелина Георгиевна
Ведёт генетическое обследование доноров Репробанка, осуществляет подбор доноров для пар, имеющих ранее рождённых детей с установленной генетической патологией.