Гис бурение что это

Принцип и методы геофизических методов исследования скважин

Геофизические методы исследования скважин (ГИС) – это совокупность физических способов анализа, которые применяются для получения информации о техническом состоянии скважин и грунтовых пород, в которых они расположены.

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Комплексная портативная лаборатория для геофизического исследования скважин

Проведение подобных процедур актуально как во время ремонтных работ, так и для определения различных параметров выработки и породы вокруг нее.

1 Какое назначение геофизических исследований скважин?

Весь комплекс методов условно делится на две категории:

Геофизические исследования и работы в скважинах необходимы для того, чтобы получить исчерпывающую информацию о том, обладает ли разрабатываемая территория достаточным количеством полезных ископаемых, и будет ли обустройство нефтяных скважин экономически выгодным.

Можно выделить следующие задачи ГИС:

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Пример полученного результата при геофизическом исследовании скважины

2 Методы исследования скважин

Поскольку задачи, стоящие перед геофизическими методами изучения скважин, достаточно обширны, и для их решения необходим всесторонний анализ особенностей разрабатываемых горизонтов. ГИС включает в себя большое количество достаточно разноплановых способов исследования. Все они, в зависимости от характера анализа, объединяются в несколько групп:

Всего существует свыше 50 методов ГИС. В этом материале мы будем знакомиться с основными методами, которые в условиях отечественной нефтедобывающей промышленности используются чаще всего.
к меню ↑

2.1 Электрические методы

Данная категория включает в себя способы исследования, которые базируются на измерении электрического поля пластов грунта, которое может возникать естественным путем, либо создаваться искусственно. Электрический каротаж является базовым способ анализа литологических показателей грунта, в котором находится шахта скважины, для контроля за её техническим состоянием, определения наличия нефтяных и рудных ресурсов и выяснения их параметров.

Электрический каротаж основывается на технологии определения различий электрических характеристик разных горных пород. Для анализа данных показателей необходимо выявить их поляризационную способность и величину электрического сопротивления.

Самые важные инструменты электрического каротажа:

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Аппаратура для проведения геофизического исследования скважин

Для электро-ГИС используются специальные измерительные зонды, которые опускаются в шахту скважины и производят замеры электрического поля.

В зависимости от технологических особенностей применяемых зондов выделяют: электрически нефокусированный каротаж, и фокусированный каротаж.

ГИС нефокусированный каротаж также называют способом исследования кажущегося сопротивления. Для его осуществления используются специальные зонды с тремя электродами, при этом, один дополнительный электрон заземляется на верху, возле устья нефтяных скважин. Основной задачей такого анализа является поиск совпадений между стандартизированными параметрами грунта скважины и величиной тока, которую они излучают, и определенными в процессе исследованиями показателями.

После того как электрические свойства породы скважины изучены, используются методы математического и физического моделирования, которые позволяют прогнозировать характеристики будущей нефтедобывающей скважины.

Электрический ГИС фокусированными зондами также называется боковым каротажем. Такие зонды обладают направленной фокусировкой посылаемого тока, что позволяет получать более точные показатели замеров (без влияния на них свойств используемой промывочной жидкости, и осадков на стенах нефтяной скважины).

Диаграммы, полученные вследствие бокового каротажа, дают возможность определить градус наклона пласта, азимут угла падения, выявить литологические свойства породы, и определить свойства пластов-коллекторов.
к меню ↑

2.2 Ядерно-геофизические методы ГИС

Из всего разнообразия геофизического анализа скважин, именно ядерные методы исследования считаются наиболее перспективным направлением. Они дают возможность выполнять исследования в ситуациях, когда большинство других методов невозможно использовать.

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Мобильная лаборатория для проведения ГИС

С помощью ядерного ГИС можно выявить следующие свойства породы:

Ядерный каротаж нефтяных скважин делится на следующие способы анализа:

Гамма-каротаж. Данный способ используется для замера природного гамма излучения породы. Зонд, использующийся для получения показателей, оборудован детектором для снятия величины гамма-изучения. После того как он опущен на достаточную глубину внутрь скважины, зонд начинает ловить волны гама-квантов, которые преобразовываются в электрический импульс и передаются по кабелю на считывающее оборудование.

Главной особенностью такого способа является возможность выполнения анализа в закрытых стволах нефтяных скважин (внутри обсадной трубы), где невозможно использовать электрический каротаж. ГК является оптимальным способом выяснения глинистости грунта.

Гамма-гамма каротаж. ГГК применяется для анализа искусственной радиоактивности породы. Перед использованием специального каротажного зонда, скважину предварительно облучают гамма-волнами, после чего происходит регистрация ответных волн. Такой способ дает возможность зарегистрировать те виды излучения, которые не проявились бы без придания породе искусственной радиоактивности.

Нейтронный каротаж. Способ нейтронного каротажа также базируется на искусственном облучении грунта. Облучение выполняется нейтронными волнами, которые не существуют в природе в естественном виде.

Используемый зонд состоит не только из детектора для снятия показателей, но и из источника нейтронного излучения.

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Оборудование для проведения ГИС

Ответная реакция породы на облучение может иметь два варианта: производство гамма-волн, либо первичного нейтронного потока. На основе данных показателей создаются диаграммы, с помощью которых можно составить картину о том, каким ресурсами обладает исследуемый горизонт, так как для разных видов полезных ископаемых характерны разные виды ответного излучения.
к меню ↑

2.3 Метод Газового каротажа

Данный метод ГИС позволяет выявить количество газов углеводорода, которыми насыщается глинистый раствор в процессе бурения скважин, вследствие чего определяются наиболее перспективные газоносные горизонты.

Для проведения газового каротажа используется специальное оборудование – газоанализаторы. Если в процессе бурения скважины производился отбор керна (горной породы), то газовый каротаж может быть проведен в лабораторных условиях посредством его анализа.

На точность газового каротажа очень влияют внешние факторы, такие как вид глинистого раствора и скорость его циркуляции, скорость бурения скважины, и остановки во время бурения.

Для точного ГК определять количество тяжелых углеводородов необходимо отдельно от остальных газов, так как именно тяжелые газы являются основной характеристикой нефтеносного горизонта.
к меню ↑

2.4 Метод Термокаротажа

Термокаротаж используется для определения технического состояния уже функционирующих нефтяных скважин. Для замера показателей используется специальный скважинный термометр, который опускается внутрь обсадной колонны.

С помощью термокаротажа можно выяснить целостность обсадной колонны, так как температура на поврежденных участках будет отличаться от общей температуры скважины, литологические особенности породы, определить песчаные и карбонатные пласты.

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Процесс проведения геофизического исследования скважины

На сегодняшний день существует три наиболее распространенных способа термокаротажа:

Вся технология основывается на свойстве почвы проводить тепло, этот показатель (коэф. теплопроводности) отличается друг от друга у разных типов грунта.
У термокаротажа имеется один существенный недостаток, который несколько ограничивает возможности его применения для нефтяных скважин: из-за заполнения скважины жидкостью, тепловые свойства отличающихся пород грунта усредняются, что вносит трудности в определение разных видов грунта.
к меню ↑

2.5 Метод Кавернометрии

Данный способ геофизического исследования скважин базируется на измерении поперечного диаметра скважины, что позволяет определить её объем при цементировании, либо создании обсадной колонны, и выполнять мониторинг дефектов стенок нефтяных скважин, спровоцированных движением грунта.

В большинстве случаев поперечное сечение скважины редко обладает формой идеального круга, по этой причине за условный диаметр скважины берется размер площади сечения скважины плоскостью, которая перпендикулярна её оси.

Оборудования для выполнения таких исследований называются каверномерами. Такие устройства состоят из двух элементов: поверхностного оборудования для считывания данных, и опускаемого внутрь шахты прибора. Внутрискважинное устройство представляет собою конструкцию с четырьмя измерительными рычагами, которые размещены в двух перпендикулярных друг к другу плоскостях, и связаны с приводом переменного резистора.

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Установка для проведения ГИС

Когда прибор двигается в середине скважины, рычаги соприкасаются с её стенками и меняют своё положение, в зависимости от этого на резистор подаются сигналы разной мощности, которые отслеживаются наружными устройствами.
к меню ↑

2.6 Метод акустического каротажа

Акустический каротаж анализирует время, которое требуется звуковому импульсу (упругим колебаниям), для прохождения грунта в околоскважинном пространстве. Поскольку каждая порода обладает своей плотностью, и, вследствие этого, разным сопротивлением, данный способ позволяет определить характеристики слоев грунта, в которых расположены нефтяные скважины.

Акустический каротаж используется для получения информации о техническом состоянии скважины, и в поиске месторождений ресурсов.

Оборудование для АК использует два диапазона частот: ультразвуковой (20-250 кГц) и звуковой (0.5-15 кГц). Для проведения исследований необходимо два устройства – измерительная аппаратура, и глубинный датчик, который укомплектован излучателем ультразвуковых волн, и приемником, имеющие свойство преобразовывать механическую энергию волн на частоте 20-50 кГц в электрический импульс.
к меню ↑

Источник

Геофизические исследования

Комплекс исследований должен включать все основные методы. Целесообразность применения дополнительных методов должна быть обоснована

Применяются для изучения геологического разреза скважин и массива горных пород в околоскважинном и межскважинном пространствах, контроля технического состояния скважин и разработки нефтяных и газовых месторождений.

Первые геофизические исследования (термометрия) выполнены Д. Голубятниковым в 1908 г. на нефтяных промыслах г Баку.

В 1926 г. братьями Шлюмберже (Франция) был предложен электрический каротаж, высокая эффективность которого обеспечила его быстрое внедрение и развитие других методов геофизических исследований.

Геофизические исследования, проводимые для изучения геологического разреза скважин, называют каротажем, который осуществляется электрическими, электромагнитными, магнитными, акустическими, радиоактивными (ядерно-геофизическими) и другими методами.

При каротаже с помощью приборов, спускаемых в скважину на каротажном кабеле, измеряются геофизические характеристики, зависящие от одного или совокупности физических свойств горных пород и их расположения в разрезе скважины.

В скважинные приборы входят каротажные зонды (устройства, содержащие источники и приемники наблюдаемого поля), сигналы которых по кабелю непрерывно или дискретно передаются на поверхность и регистрируются наземной аппаратурой в виде кривых (рис.) или массивов цифровых данных.

Разрабатываются способы каротажа, которые можно проводить в процессе бурения приборами, опускаемыми в скважину на бурильных трубах.

При электрическом каротаже изучают удельное электрическое сопротивление, диффузионно-адсорбционную и искусственно вызванную электрохимическую активность пород и т.п.

Для определения удельного сопротивления применяют боковое каротажное зондирование (измерения 3-электродными градиент-зондами разной длины), боковой каротаж (измерения зондами с фокусировкой тока), микрокаротаж и боковой микрокаротаж.

При электромагнитном каротаже изучаются удельная электрическая проводимость (индукционный каротаж), магнитная восприимчивость (каротаж магнитной восприимчивости, КМВ) и диэлектрическая проницаемость (диэлектрический каротаж, ДК) горных пород индукционными зондами на различных частотах 1 кГц (КМВ), 100 кГц и 40 МГц (ДК).

При магнитном каротаже измеряются магнитная восприимчивость пород и характеристики магнитного поля.

Акустический каротаж основывается на регистрации интервальных времен (скорости), амплитуд и других параметров упругих волн ультразвукового и звукового диапазона.

При радиоактивном каротаже (ядерно-геофизическом) в скважинах измеряют характеристики ионизирующего излучения.

Широко используется изучение характеристик нейтронного и гамма-излучения, возникающих в породах при облучении их стационарным источником нейтронов (нейтрон-нейтронный каротаж и нейтронный гамма-каротаж) или источниками гамма-излучений (гамма-гамма-каротаж).

Модификации радиоактивного каротажа применяются с импульсными источниками нейтронов (импульсный нейтрон-нейтронный каротаж, импульсный нейтронный гамма-каротаж) и гамма-излучения (импульсный гамма-гамма-каротаж).

Естественное гамма-излучение пород исследуется в гамма-каротаже.

В активационном радиоактивном каротаже изучаются характеристики излучения искусственных радиоактивных изотопов, возникающих в породах при облучении их источником ионизирующих излучений.

Ядерно-магнитный каротаж заключается в наблюдении за изменением электродвижущей силы, возникающей в катушке зонда в результате свободной прецессии протонов в импульсном магнитном поле.

Газовый каротаж обеспечивает изучение физическими методами содержания и состава углеводородных газов и битумов в буровом растворе, а также параметров, характеризующих режим бурения.

Иногда применяются исследования, основанные на определении механических свойств в процессе бурения (механический каротаж).

Околоскважинные и межскважинные исследования основаны на изучении в массивах горных пород особенностей естественных или искусственно созданных геофизических полей:

-магнитного (скважинная магниторазведка), гравитационного (скважинная гравиразведка), распространения радиоволн (радиоволновой метод, РВМ), упругих волн (акустическое просвечивание), постоянного или низкочастотного электрического (метод заряженного тела), нестационарного электромагнитного (метод переходных процессов);

— пьезоэлектрического эффекта, возникающего в горных породах под воздействием упругих колебаний (пьезоэлектрический метод);

— потенциалов вызванной поляризации, возникающих на контакте рудного тела в результате воздействия источника тока в скважине или на поверхности Земли (контактный метод поляризационных кривых) и др.

В радиоволновых методах разведки источник электромагнитных колебаний (частота 0,16-37 МГц) размещается в скважине; регистрация осуществляется с помощью приемников (антенн) в этой же скважине (околоскважинные исследования) или в соседней (межскважинные исследования).

В некоторых случаях поле наблюдается на поверхности Земли.

При разведке акустическим просвечиванием возбуждение и наблюдение волн осуществляется так же, как в РВМ.

В методе заряженного тела токовый электрод размещают в скважине против рудного тела; наблюдения производят в скважине или на поверхности.

Методы околоскважинных и межскважинных исследований позволяют обнаружить и оконтурить рудные тела и другие геологические образования, пересеченные скважиной или находящиеся в стороне от нее.

При контроле технического состояния скважин измеряют ее зенитный угол и азимут (инклинометрия), средний диаметр (кавернометрия) и расстояние от оси прибора до стенки скважины (профилеметрия), температуру (термометрия), удельное электрическое сопротивление бурового раствора (резистивиметрия), определяют высоты подъема цемента в затрубном пространстве скважины и его качество (контроль цементирования) по данным кривым акустического и гамма-гамма-каротажа и др.

При разработке месторождения регистрируют скорости перемещения жидкости по скважине (расходометрия), вязкость заполняющей жидкости (вискозиметрия), содержание воды в последней (влагометрия), давление по стволу (барометрия) и др.

Отбор проб флюидов из пласта (опробование пластов) производится опробователями пластов, которые на каротажном кабеле опускаются в скважину на заданную глубину.

После этого блок отбора (башмак) прижимается к стенке скважины и кумулятивной перфорацией создается дренажный канал между пластом и прибором для подачи флюида в приемный баллон прибора.

Образцы пород из стенок скважин отбирают стреляющими грунтоносами и сверлящими керноотборниками.

При анализе проб определяется содержание нефти, газа и воды, а также компонентный состав газа, что дает возможность оценить нефтегазоносность пласта, литологию, наличие углеводородов, а иногда и коэффициент пористости породы.

Геофизические исследования применяют при поисках и разведке нефти и газа (промысловая геофизика), угля (угольная скважинная геофизика), руд и строительных материалов (рудная скважинная геофизика) и воды (геофизические исследования гидрогеологических скважин).

Получаемые данные обеспечивают расчленение разреза скважин на пласты, определение их литологии и глубины залегания, выявление полезных ископаемых (нефти, газа, угля и др.), корреляцию разрезов скважин, оценку параметров пластов для подсчета запасов (эффективную мощность, содержание полезных ископаемых), определение объема залежи нефти, газа, угля или рудного тела, оценку физико-механических свойств пород при строительстве различных сооружений и др.

Повышение эффективности геофизических исследований связано с разработкой и внедрением новых методов, а также с совершенствованием методики и техники исследований; внедрением машинных методов обработки и интерпретации данных, создания цифровых каротажных лабораторий, управляемых бортовым компьютером, комплексных геолого-геохимическо-геофизических информационно-измерительных и обрабатывающих комплексов, высокоточных и термобаростойких комплексных скважинных приборов и др.

Комплекс исследований должен включать все основные методы.

Целесообразность применения дополнительных методов должна быть обоснована промыслово-геофизическим предприятием.

Комплексы методов исследований уточняют в зависимости от конкретных геолого-технических условий по взаимно согласованному плану между геофизической и промыслово-геологичсской службами.

В заключении геофизического предприятия приводятся результаты ранее проведенных исследований (в том числе и не связанных с КРС), а в случае их противоречия с данными предыдущих исследований, указываются причины.

Перед началом геофизических работ скважину заполняют жидкостью необходимой плотности до устья, а колонну шаблонируют до забоя.

При выявлении источников обводнения продукции в действующих скважинах исследования включают измерения высокочувствительным термометром,
гидродинамическим и термокондуктивным расходомерами, влагомером, плотномером, резистивиметром, импульсным генератором нейтронов.

Комплекс исследований зависит от дебита жидкости и содержания воды в продукции.

Привязку замеряемых параметров по глубине осуществляют с помощью локатора муфт и ГК.

Для выделения обводнившегося пласта или пропластков, вскрытых перфорацией, и определения заводненной мощности коллектора при минерализации воды в продукции 100 г/л и более в качестве дополнительных работ проводят исследования импульсными нейтронными методами (ИНМ) как в эксплуатируемых, так и в остановленных скважинах.

В случаях обводнения неминерализованной водой эти задачи решаются ИНМ по изменениям до и после закачки в скважину минерализованной воды с концентрацией соли более 100 г/л.

Эти измерения проводятся в комплексе с исследованиями высокочувствительным термометром для определения интервалов поглощения закачанной воды и выделения интервалов заколонной циркуляции.

Измерения ИНМ входят в основной комплекс при исследовании пластов с подошвенной водой, частично вскрытых перфорацией, при минерализации воды в добываемой продукции более 100 г/л.

Оценку состояния выработки запасов и величины коэффициента остаточной нефтенасыщенности в пласте, вскрытом перфорацией, проверяют исследованиями ИНМ в процессе поочередной закачки в пласт двух водных растворов, различных по минерализации.

По результатам измерения параметра времени жизни тепловых нейтронов в пласте вычисляют значение коэффициента остаточной насыщенности. Технология работ предусматривает закачку 3-4 м 3 раствора на 1 м толщины коллектора.

Закачку раствора проводят отдельными порциями с замером параметра до стабилизации его величины.

Состояние насыщения коллекторов, представляющих объекты перехода на другие горизонты или приобщения пластов, оценивают по результатам геофизических исследований. При минерализации воды в продукции более 50 г/л проводят исследования ИНМ.

При переводе добывающей скважины под нагнетание обязательными являются исследования гидродинамическим расходомером и высокочувствительным термометром, которые позволяют выделить отдающие или принимающие интервалы и оценить степень герметичности заколонного пространства.

Источник

Геофизические исследования скважин на воду

Главная » Бурение » Геофизические исследования скважин на воду

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Под геофизическими исследованиями скважин (ГИС) подразумевается комплекс методик, определяющих техническое состояние самих скважин и грунтовых пород на 1-2 метра вокруг них.

Зачем проводят такие исследования и в каких случаях их организуют?

Геофизические исследования скважин дают точные данные о гео-пластах, помогают скорректировать конструкцию и глубину скважин, определить интервалы монтажа фильтров водоприточных зон.

В такой проверке нуждаются как новые, так и действующие скважины.
Исследование назначаются, когда:

Эти инженерно-геофизические изыскания позволяют определить, каков потенциал новой или действующей скважины. Дают точное представление об актуальном состоянии геологических пластов (глины, известняка, песка), водопроводимости (притока воды) и пористости пород (водного запаса).

Методы ГИС, особенности работы с новыми и действующими скважинами

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

Распространённых методов геофизических исследований скважин на воду – три.

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

По результатам любого из этих обследований специалисты получают актуальные данные о состоянии обсадной колонны и параметрах притока в неё вод, а также выявляют возможные дефекты.

К вспомогательным методам прибегают, когда основное исследование дало размытое заключение по скважине. Для внесения ясности используют:

ГИС при обустройстве новой артезианской скважины

Гис бурение что это. Смотреть фото Гис бурение что это. Смотреть картинку Гис бурение что это. Картинка про Гис бурение что это. Фото Гис бурение что это

После выполнения бурения специалисты контролируют качество выполненных работ, обследуя стенки новой скважины. ГИС помогает увидеть любые нарушения в стволе: пустоты в структуре грунтов, деформации или разрывы в обсадной колонне. Также, анализируя свойства горных пород по всей глубине ствола, можно определить водоносный горизонт и возможные условия его эксплуатации.
Исследование даёт информацию для реальной оценки работоспособности и сроков эксплуатации водозабора. Прогнозирует оно и степень рисков будущего загрязнения водоносного горизонта.

Поскольку артезианская скважина может достигать нескольких сотен метров в глубину, позднее обнаружение дефектов чревато увеличением временных и денежных затрат.

Геофизические исследования действующих скважин-водозаборов

ГИС действующей скважины – это её техобслуживание, забота о её исправном состоянии и продление срока службы водозабора.
Геофизика даёт специалистам исчерпывающую информацию о составе пластов грунта и состоянии ствола скважины, с детализацией всего её разреза. Кроме выявления дефектов, это даёт возможность точно определить эксплуатационный водоносный горизонта; мощность водообильной зоны; локализировать источник притока воды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *