Главный вектор равен чему равен

Главный вектор и главный момент сил.

Связи и реакции связей.

Связь осуществляется при помощи гибкого тела, нити, каната или троса. Реакция такой связи приложена к телу в точке прикрепленной к нему нити. Перечислим некоторые типы связей, предполагая, что они изготовлены из абсолютно твердых материалов и трение в местах их соприкосновения с рассматриваемыми телами отсутствует.

2)Шарнирное соединение тел (сферический шарнир, шарнирная опора неподвижная).

Система сходящихся сил.

Системой сходящихся сил наз-ют такую систему сил, линии действия которых пересекаются в одной точке. Сходящиеся системы сил могут быть пространственными или плоскими, расположенные в одной плоскости.

Сходящиеся системы сил могут быть пространственными и плоскими, т.е. расположенными в одной плоскости.

Момент силы относительно точки и оси.

Моментом силы относительно точки называется алгебраическая величина, равная произведению модуля силы на кратчайшее расстояние от точки до линии действия силы.Численное значение момента силы F относительно точки О будем обозначать mo(F). Тогдаmo(F) = ±Fh.Моментом силы относительно оси называется алгебраическая величина момента проекции этой силы на плоскость, перпендикулярную к данной оси, относительно точки пересечения этой плоскости с осью. Момент силы F относительно оси считается положительным, если наблюдатель, смотрящий с положительного направления оси, видит поворот, совершаемый составляющей Fxy силы F, происходящим против хода часовой стрелки.Из определения момента силы относительно оси следует

9Приведение к равнодействующей силе сходящихся сил.

Сложить 2 силы или неск. сил – это значит найти их равнодействующую. Задача о сложении 2х сил, приложенных к тв. телу в одной точке решается на основании правила параллелограмма.

Системой сходящихся сил называют такую систему сил, линии действия которых пересекаются в одной точке

Сходящиеся системы сил могут быть пространственными и плоскими, т.е. расположенными в одной плоскости.

.величина равнодействующей определится следующей формулой:

Для определения направления равнодействующей к воспользуемся обычными выражениями для направляющих косинусов:

Пара сил и ее момент.

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на тело. Действие пары сил на тело сводится к вращательному эффекту. Для характеристики этого эффекта вводится понятие момента пары.:Моментом пары называется величина, равная взятому с соответствующим знаком произведению модуля одной из сил пары на ее плечо. Для равновесия пар сил, действующих на твердое тело, необходимо и достаточно, чтобы модуль векторного момента эквивалентной пары сил был равен нулю или чтобы векторный многоугольник, построенный на векторных моментах заданных пар сил, был замкнут.Момент пары считается положительным, если пара стремится повернуть тело против хода часовой стрелки, и отрицательным – если по ходу часовой стрелки.

Главный вектор и главный момент сил.

Главным вектором системы сил называют вектор, равный векторной сумме этих сил.

Главным моментом системы сил относительно точки O тела называют сумму векторных моментов всех сил системы относительно этой точки. Таким образом, основную теорему статики (теорему Пуансо) в краткой форме можно выразить так: Каждую систему сил можно привести к главному вектору и главному моменту относительно произвольного центра.

Источник

Главный вектор и главный момент плоской системы сил

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Рассмотрим плоскую систему сил ( Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен), действующих на твердое тело в координатной плоскости 0XY (рис.1.29).

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главным вектором системы сил называется вектор Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен, равный векторной сумме этих сил:

Для плоской системы сил её главный вектор лежит в плоскости действия этих сил.

Модуль R главного вектора плоской системы сил вычисляется по следующим формулам:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен,(1.28)

Главным алгебраическим моментом М0 плоской системы сил, называют сумму алгебраических моментов этих сил относительно некого центра (точки 0).

Величина M0 может быть вычислена по формуле:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

К вершинам квадрата со стороной a = 0.5(м) приложены силы: F1 = 4(Н); F2 = F3 = 8(Н); F4 = 12(Н). Определить главный вектор этой системы сил и её главный алгебраический момент относительно центра квадрата 0.

Решение. Введем координатную систему 0XY, оси которой параллельны сторонам квадрата.

Вычисление главного алгебраического момента M0 проведем с использованием плеч сил F1 и F4, равных половине длины стороны квадрата (a/2):

Таким образом, для заданной системы сил её главный вектор равен по модулю R = 8(Н) и направлен вдоль оси 0X, а её главный алгебраический момент M0 = 0.

Замечание. В случае, когда главный алгебраический момент M0 = 0, главный вектор R является равнодействующей силой заданной системы сил.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Что такое главный вектор системы сил?

2. Сформулируйте определение для главного момента системы сил.

3. Зависят ли значения главного вектора и главного момента системы сил от выбора центра?

Источник

Большая теория по векторам

И ты наверняка обратил внимание, что некоторые величины имеют только значение (число) – например, путь (\(L\)).

А некоторые имеют и число, и направление — например, перемещение (\(\vec\)).

И сейчас ты узнаешь, почему это настолько важно.

Векторы — коротко о главном

Решать задачи с векторами — легко!

Векторы и… Колумб

В 1492 году Колумб приказал кораблям изменить курс на запад-юго-запад, полагая, что он и его команда уже прошли мимо Японии, не заметив ее островов.

Вскоре его экспедиция наткнулась на множество архипелагов, которые ошибочно принимали за земли Восточной Азии. И теперь, спустя века, американцы в октябре отмечают высадку Колумба в Новом Свете.

Кто знает, как повернулась бы история, если бы его корабли не поменяли свое направление?

О направлении

Направление – одна из важнейших характеристик движения.

Подумай, какие из этих величин являются просто числами, а какие тоже являются числами, но имеют еще и направление.

Наверное, ты без труда заметил, что направление имеют сила, скорость, перемещение, а время, длина, масса и температура – это просто числа.

Так вот, «просто числа» — это скалярные величины (их также называют скалярами).

А «числа с направлением» — это векторные величины (их иногда называют векторы).

В физике существует множество скалярных и векторных величин.

Что такое скалярная величина?

Скалярная величина, в отличие от вектора, не имеет направления и определяется лишь значением (числом)

Это, например, время, длина, масса, температура (продолжи сам!)

Что такое векторная величина?

Векторная величина – это величина, которая определяется и значением, и направлением.

В случае с векторами нам важно, куда мы, например, тянем груз или в какую сторону движемся.

Например, как на этом рисунке изображен вектор силы (нам важно не только с какой силой, но и куда мы тянем груз):

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Как обозначаются векторы?

Векторы принято обозначать специальным символом – стрелочкой над названием. Вот, например, вектор перемещения: \(\vec\)

Значение вектора – это модуль вектора, то есть его длина.

Обозначить это можно двумя способами: \(\left| <\vec> \right|\) или \(S\)

Операции над векторами

Для решения задач необходимо уметь работать с векторами: складывать, вычитать, умножать их.

Давай научимся это делать. Мы пойдем от простого к сложному, но это вовсе не значит, что будет трудно!

Умножение вектора на число

Если вектор умножить на какое-либо число (скаляр), мы просто «растягиваем» вектор, сохраняя его направление. Получившийся вектор сонаправлен начальному, то есть они имеют одинаковое направление.

(Если направление противоположно, обозначаем так: \(\vec\uparrow \downarrow \vec\))

Рассмотрим на примере, используя клетку для точности построений:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Если вектор умножить на ноль, он станет нулевым.

Обязательно нужно ставить значок вектора над нулем! Нельзя говорить, что векторная величина просто равна скалярной:

Рассмотрим некоторые свойства нулевого вектора.

Если он нулевой, то его длина равна нулю! Логично, не правда ли?

А это значит, что его начало совпадает с концом, это просто какая-то точка.

Нулевой вектор – вектор, начало которого совпадает с концом.

Нулевой вектор принято считать сонаправленным любому вектору.

Его мы можем получить не только путем умножения вектора на ноль, но и путем сложения противонаправленных векторов:

А если к любому вектору прибавит нулевой, ничего не изменится:

Если вектор умножают на отрицательное число, он изменит свое направление на противоположное. Такой вектор называется обратным данному.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Но такие векторы должны быть коллинеарны. Звучит как скороговорка, но ничего страшного. Главное – понять суть.

Коллинеарные векторы – векторы, лежащие на одной прямой или на параллельных прямых.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Две прямые параллельны: \(q\parallel p\)

Векторы лежат на одной прямой: они коллинеарны. По направлению видно, что они противонаправлены, это обозначается так:

Векторы лежат на параллельных прямых, они коллинеарны. При этом они сонаправлены:

Эти двое тоже коллинеарны! Они ведь лежат на параллельных прямых. При этом они противонаправлены:

\(\vec\uparrow \downarrow \vec\)

Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу.

Параллельный перенос векторов

Одно из важных свойств вектора, которое очень часто помогает в операциях над ним, – параллельный перенос.

Если передвинуть вектор, не меняя его направления и длины, он будет идентичен начальному. Это свойство – параллельный перенос.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Сложение векторов по правилу треугольника

Сложение векторов – одна из самых легких и приятных вещей. Предположим, у нас есть два вектора:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Наша цель – найти такой вектор, который будет являться суммой двух данных:

Для начала нужно сделать так, чтобы конец одного вектора был началом другого. Для этого воспользуемся параллельным переносом:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Теперь достроим до треугольника.

Но как узнать направление нужного нам вектора?

Все просто: вектор суммы идет от начала первого слагаемого к концу второго, мы словно «идём» по векторам:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Это называется правилом треугольника.

Больше двух слагаемых векторов. Сложение по правилу многоугольника

Но что делать, нам нужно сложить не два, а три, пять векторов или даже больше?

Мы руководствуемся той же логикой: соединяем векторы и «идём» по ним:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Это называется правилом многоугольника.

Вычитание векторов через сложение

Вычитание векторов не сложнее. Это даже можно сделать через сумму! Для этого нам понадобится понятие обратного вектора. Запишем разность так:

Тогда нам лишь остается найти сумму с обратным вектором:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

А сделать это очень легко по правилу треугольника:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Всегда помни, что вычитание можно представлять сложением, а деление — умножением на дробь.

Вычитание векторов через треугольник

Вычитать векторы можно через треугольник. Основная задача будет состоять в том, чтобы определить направление вектора разности.

Итак, векторы должны выходить из одной точки. Далее мы достраиваем рисунок до треугольника и определяем положение. Рассмотрим два случая:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Направление вектора разности зависит от того, из какого вектора мы вычитаем. У них совпадают концы.

Универсальное правило параллелограмма

Есть еще один способ сложения и вычитания векторов.

Способ параллелограмма наиболее востребован в физике и сейчас ты поймешь, почему. Основа в том, чтобы векторы выходили из одной точки, имели одинаковое начало.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Ничего не напоминает?

Именно! Когда мы делаем чертеж к задачам по физике, все силы, приложенные к телу, мы рисуем из одной точки.

В чем же заключается правило параллелограмма? С помощью параллельного переноса достроим до параллелограмма:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Тогда вектор суммы будет диагональю этой фигуры. Это легко проверяется правилом треугольника. Начало этого вектора совпадает с началом двух слагаемых векторов:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Другая диагональ будет являться разностью этих векторов. Направление определяем так же, как делали раньше.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Скалярное произведение векторов

Еще одной важной операцией является произведение векторов. Рассмотрим скалярное произведение. Его результатом является скаляр.

Уравнение очень простое: произведение длин этих векторов на косинус угла между ними.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Векторное произведение векторов

Векторное произведение векторов пригодится нам в электродинамике.

Его формула лишь немного отличается от предыдущей:

В отличие от скалярного произведения, результатом его является вектор и его даже можно изобразить!

После параллельного переноса векторов и нахождения угла между ними достроим их до параллелограмма и найдем его площадь. Площадь параллелограмма равна длине вектора произведения:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Этот вектор одновременно перпендикулярен двум другим. Его направление зависит от условного порядка векторов, который либо определен какими-то фактами (когда мы будем изучать силу Лоренца), либо является свободным.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Об этом мы поговорим подробнее, когда будем изучать электродинамику.

Итак, мы разобрали операции с векторами, рассмотрев даже самые сложные из них. Это было не так тяжело, верно? Так происходит не только с векторами, но и со многими другими темами. Идя от легкого к сложному, мы даже не заметили трудностей.

Ведь всегда стоит помнить о том, что даже самое длинное путешествие начинается с первого шага.

Проекции векторов

Что такое проекция вектора и с чем ее едят?

Мы уже выяснили, что над векторами можно проводить множество операций. Здорово, когда можешь начертить векторы, достроить их до треугольника и измерить результат линейкой.

Но зачастую физика не дает нам легких цифр. Наша задача – не отчаиваться и быть умнее, упрощая себе задачи.

Для того, чтобы работать с векторами как с числами и не переживать об их положении и о точности рисунков, были придуманы проекции.

Проекция вектора – словно тень, которую он отбрасывает на ось координат. И эта тень может о многом рассказать.

Ось координат — прямая с указанными на ней направлением, началом отсчёта и выбранной единицей масштаба.

Ось можно выбрать произвольно. В зависимости от ее выбора можно либо значительно упростить решение задачи, либо сделать его очень сложным.

Именно поэтому необходимо научиться работать с проекциями и осями.

Построение проекции. Определение знака

Возьмем вектор и начертим рядом с ним произвольную ось. Назвать ее тоже можно как угодно, но мы назовем ее осью Х.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Теперь опустим из начала и конца вектора перпендикуляры на эту ось. Отметим координаты начала (Х0) и конца (Х). Рассмотрим отрезок, заключенный между этими точками.

Казалось бы, мы нашли проекцию. Однако думать, что проекция является простым отрезком, – большое заблуждение.

Не все так просто: проекция может быть не только положительной. Чтобы найти проекцию, нужно из координаты конца вычесть координату начала:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось.

В случае выше определить знак довольно легко. Сразу видим, что координата конца численно больше координаты начала и делаем вывод о том, что проекция положительна:

Порой работать с буквами трудно. Поэтому предлагаю взять конкретный пример:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Рассмотрим другой случай. В этот раз координата начала больше координаты конца, следовательно, проекция отрицательна:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Рассмотрим еще один интересный случай.

Давай разместим ось так, чтобы вектор был ей перпендикулярен. Проекции точек начала и конца совпадут и проекция вектора будет равна нулю!

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Анализ углов

Рассматривая эти ситуации, можно заметить, что знак, который принимает проекция вектора напрямую зависит от угла между вектором и осью, то есть от его направления!

Из начала вектора проведем луч, параллельный оси и направленный в ту же сторону, что и ось. Получим угол между вектором и осью.

Если угол острый, проекция положительна:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Если угол тупой, проекция отрицательна:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Обрати особое внимание на то, какой именно угол является углом между вектором и осью!

Частные случаи проекции

Настоящий подарок судьбы – тот момент, когда вектор параллелен оси. Это сохраняет драгоценное время при решении множества задач. Рассмотрим эти случаи.

Если вектор параллелен оси, угол между ними либо равен нулю, либо является развернутым (180 О ). Это зависит от направления.

При этом длина проекции совпадает с длиной вектора! Смотри!

Как и прежде, если вектор направлен туда же, куда и ось, проекция положительна:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Если вектор направлен в другую сторону, проекция отрицательна:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна.

Эти утверждения применимы не только к векторам, которые параллельны оси. Это особенно удобно использовать в тех случаях, когда ось направлена под углом.

Что? Почему раньше не сказал? А… Ну…

Хватит вопросов! Вот тебе пример:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

\(\vec\) направлен противоположно оси. Его проекция отрицательна.

Еще один частный случай – работа с обратными векторами.

Давай выясним, как связаны проекции данного вектора и вектора, который является ему обратным. Начертим их и обозначим координаты начал и концов:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Проведем дополнительные линии и рассмотрим два получившихся треугольника. Они прямоугольны, так как проекция строится с помощью перпендикуляра к оси.

Наши векторы отличаются лишь направлением. При этом, если мы просто посмотрим на них как на прямые, мы можем сказать, что они параллельны. Их длины тоже одинаковы.

Прямоугольные треугольники равны по углу и гипотенузе. Это значит, что численно равны и их катеты, в том числе те, которые равны проекциям:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Мы помним, что обратные векторы всегда коллинеарны. Это значит, что прямые, на которых они расположены, находятся под одним углом к оси:

Остается лишь определиться со знаками. Данный вектор направлен по оси Х, а обратный ему – против. Значит, первый положителен, а второй отрицателен. Но модули их равны, так как равны их длины.

Проекции обратных векторов равны по модулю и противоположны по знаку.

Давайте еще раз уточним.

Вектор сам по себе не может быть отрицательным (обратный вектор есть вектор, умноженный на минус единицу).

Длина вектора так же не может быть отрицательной. Длина есть модуль вектора, а модуль всегда положителен.

Проекция вектора бывает отрицательной. Это зависит от направления вектора.

Способы нахождения проекций и векторов с помощью тригонометрии

Зная угол между вектором и осью, можно не прибегать к координатам. Углы, прямоугольные треугольники… Всегда стоит помнить, что, если ты видишь прямоугольный трегольник, тригонометрия протянет тебе руку помощи.

Именно тригонометрия чаще всего применяется в задачах, где требуется работать с проекциями. Особенно она помогает в задачах на второй закон Ньютона.

Рассмотрим вектор и его проекции на оси:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Можем заметить, что проекции вектора соответствуют катетам прямоугольного треугольника, который легко можно достроить:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Тогда обозначим прямой угол и угол между вектором и осью:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Зная, что проекции соответствуют катетам, мы можем записать, чему равны синус и косинус угла. Они равны отношению проекций к гипотенузе. За гипотенузу считаем длину данного вектора.

Из этих уравнений легко выражаются проекции.

А еще следует помнить, что из проекций мы можем найти длину данного вектора с помощью теоремы Пифагора:

Зная, как работать с проекциями векторов и часто практикуясь, можно довести свои навыки решения большинства задач механики до совершенства.

Действия над проекциями векторов. Решение задач

Умение применять свои знания на практике невероятно важны. Это касается не только физики.

Мы знаем, что проекции были придуманы для того, чтобы работать не с векторами, а с числами.

Сложение проекций. Доказательство главного свойства

Предположим, у нас есть два вектора и нам нужно найти их сумму. Посчитать по клеткам нам вряд ли удастся:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Спроецируем оба вектора на ось Х. Заметим, что конец одного вектора есть начало второго, то есть их координаты совпадают:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Давай посчитаем проекции векторов и проекцию вектора их суммы:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Мы можем заметить, что сумма проекций двух данных векторов оказалась равна проекции вектора их суммы!

Намного важнее уметь доказывать гипотезы в общем виде.

Тогда никто не сможет упрекнуть тебя в том, что твои утверждения – просто результат совпадения!

Согласно определению проекции, запишем уравнения проекций для двух данных векторов и вектора их суммы:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Затем запишем, чему равна сумма этих векторов.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Мы доказали нашу гипотезу.

Но что насчет разности?

Все очень просто! Помнишь, как мы считали разность через сумму? Здесь это делается аналогично!

Проекция суммы векторов равна сумме проекций векторов.

Проекция разности векторов равна разности проекций векторов.

Или можно записать так:

Простейшие задачи на нахождение проекций

Простейшие задачи на нахождение проекций чаще представлены в виде различных графиков или рисунков.

Давай научимся с ними работать.

Нам даны оси и векторы. Задача: найти проекции каждого из них на обе оси.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Будем делать все по порядку. Для каждого вектора предлагаю сначала определить знак проекций, а затем посчитать их.

В первом случае вектор направлен против оси Х.

Значит, его проекция на эту ось будет отрицательна. Мы убедимся в этом с помощью вычислений.

Сразу бросается в глаза то, что вектор расположен перпендикулярно оси Y. Его проекция на эту ось будет равна нулю, ведь расстояние между проекциями точек начала и конца равно нулю!

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Рассмотрим второй вектор.

Он «сонаправлен» оси Y и «противонаправлен» оси Х. Значит, проекция на ось будет положительна, а на ось Х – отрицательна.

На осях для удобства отметим проекции точек начала и конца вектора, проведя перпендикуляры. Затем проведем вычисления:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Рассмотрим \(\vec\). Заметим, что он является обратным для \(\vec\): их длины равны, а направления противоположны.

Мы помним, что в таком случае их проекции отличаются лишь знаками. И это действительно так:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Поступаем с \(\vec\) так же, как поступали с первым вектором.

Он перпендикулярен оси Х, а значит его проекция (что есть разность между проекциями точки конца и начала!) на эту ось равна нулю.

Проведя перпендикуляры, считаем проекцию на ось Y:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

С \(\vec\) работать приятно: он расположен по направлению обеих осей. Обе его проекции будут положительны, остается лишь посчитать их:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Задачи на нахождение вектора и его угла с осью

С помощью проекций можно найти длину вектора и его направление, а также угол, под которым он находится относительно оси.

Давай попробуем это сделать.

Даны проекции вектора на две оси. Для начала нарисуем оси:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Расположить вектор можно как угодно, поэтому произвольно отметим на осях его проекции. Мы помним, что проекции и вектор образуют прямоугольный треугольник. Давай попробуем его составить.

С проекцией на ось Х все понятно, просто поднимаем ее. Но куда поставить проекцию оси Y?

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Для этого нам нужно определить направление вектора. Проекция на ось Х отрицательна, значит вектор направлен в другую сторону от оси.

Проекция на ось Y положительна. Вектор смотрит в ту же сторону, что и ось.

Исходя из этого, мы можем нарисовать вектор и получить прямоугольный треугольник:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Теперь нужно найти длину этого вектора. Используем старую добрую теорему Пифагора:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Обозначим угол \(\alpha \), который необходимо найти, мы учились это делать в начале изучения проекций. Он расположен вне треугольника. Мы ведь не ищем легких путей, верно?

Рассмотрим смежный ему угол \(\beta \). Его найти гораздо проще, а в сумме они дадут 180 градусов.

Чтобы сделать это, абстрагируемся от векторов, проекций и просто поработаем с треугольником, стороны которого равны 3, 4 и 5. Найдем синус угла \(\beta \) и по таблице Брадиса (либо с помощью инженерного калькулятора) определим его значение.

Вычитанием угла \(\beta \) из 180 градусов найдем угол \(\alpha \):

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Главный метод работы с осями и проекциями в решении физических задач

В большинстве задач по физике, когда в условиях нам дают значения векторных величин, например, скорости, нам дают длину вектора.

Поэтому важно научиться искать проекции вектора и связывать их с ней.

Рассмотрим следующий рисунок (вектор F2 перпендикулярен вектору F3):

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Чаще всего с подобным расположением векторов мы встречаемся в задачах, где необходимо обозначить все силы, действующие на тело.

Одним из важных этапов решение «векторной части» этих задач является правильный выбор расположения осей. Он заключается в том, чтобы расположить оси так, чтобы как можно большее число векторов оказались им параллельны.

Как правило, оси располагаются под прямым углом друг к другу, чтобы не получить лишней работы с углами.

Сделаем это для данного рисунка:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Мы видим, что остальные векторы расположены к осям под каким-то углом.

Пунктиром проведем горизонтальную линию и отметим этот угол, а затем отметим другие равные ему углы:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Пришло время искать проекции. У нас две оси, поэтому сделаем для удобства табличку:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Мы располагали оси так, чтобы некоторые векторы были расположены параллельно осям, значит их проекции будут равняться их длинам.

Оси перпендикулярны друг другу, поэтому некоторые проекции будут равняться нулю. Запишем это:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Переходим к векторам, которые расположены под углом.

Выглядит страшно, но это не так!

Дальше идет чистая геометрия. Чтобы не запутаться, рассмотрим лишь часть рисунка. А лучше и вовсе перерисовать его часть, могут открыться много новых вещей.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Из конца вектора F1 проведем перпендикуляр к оси Y. Мы получим прямоугольный треугольник, где нам известен угол (альфа) и гипотенуза (вектор).

Обозначим, что является проекцией. Это катет:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Здесь на помощь придет тригонометрия. Этот катет прилежащий к известному углу. Синус угла есть проекция катета, деленная на гипотенузу. Отсюда можно выразить катет (проекцию) и записать ее в таблицу.

Вспомни, когда мы первый раз встретились с тригонометрией, изучая векторы. Мы тоже рассматривали прямоугольный треугольник.

Найдем проекцию на ось Х. Это, кажется, сложнее, ведь мы не знаем угол…

Знаем! Ведь проекция вектора на ось Х – то же самое, что противолежащий катет уже рассмотренного треугольника, смотри:

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Главный вектор равен чему равен. Смотреть фото Главный вектор равен чему равен. Смотреть картинку Главный вектор равен чему равен. Картинка про Главный вектор равен чему равен. Фото Главный вектор равен чему равен

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Заключение

Итак, теперь мы знаем о векторах очень много! Мы выяснили, зачем они нужны и как с ними работать, а еще разобрали их роль в решении различных задач. Теперь векторы — наша прочная опора.

Именно из таких знаний складывается порой нечто более сложное и комплексное, что-то, что безусловно нам однажды поможет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *