Губчатый свинец что это

Почему в качестве электродов свинцово-кислотного аккумулятора используется губчатый свинец и двуокись свинца?

Почему в качестве электродов свинцово-кислотного аккумулятора используется губчатый свинец и двуокись свинца?

В свинцовом аккумуляторе в токообразующихпроцессах участвуют двуокись свинца (диоксид свинца) PbO2 (окислитель) положительного электрода, губчатый свинец Pb (восстановитель) отрицательного электрода и электролит (водный раствор серной кислоты H2SO4). Активные вещества электродов представляют собой относительно жесткую пористую электронопроводящую массу.

При разряде происходит химическая реакция, в результате которой активная масса обоих электродов начнет изменять свой химический состав, преобразуясь из губчатого свинца и его двуокиси в сернокислый свинец (сульфат свинца – PbSO4), а плотность электролита начнет падать. В результате внутри батареи образуется направленное движение ионов и в цепи потечет электрический ток.

3) Поясните физические процессы заряда и разряда аккумулятора.

При разряде аккумулятора генерируется ток за счет осаждения SO4 на пластинах и активная масса как положительного, так и отрицательного электродов превращается в сульфат свинца, в связи с чем снижается концентрация электролита и постепенно повышается внутреннее сопротивление.

При полном разряде плотность электролита снижается 1,10-1,14 г/см и практически вся активная масса превращается в сернокислый свинец (сульфат свинца), который имеет свойство постепенно кристаллизоваться и терять способность к электрохимическим преобразованиям, после чего батарею практически невозможно восстановить. Этот процесс называется «сульфатацией». Поэтому долгое пребывание в состоянии разрядки губительно для аккумулятора. Чтобы избежать «сульфатации» необходимо как можно быстрее произвести зарядку разряженной батареи.

Физические процессы, происходящие при пуске двигателя, отличаются от процессов при медленном разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы.

Процесс зарядки батареи состоит в электрохимическом разложении PbSO4 на электродах под воздействием постоянного тока внешнего источника. Процесс заряда полностью разряженной батареи похож на процесс разряда, как бы развивающийся в обратном направлении. Первоначально ток заряда достаточно велик и ограничен лишь способностью внешнего источника генерировать необходимый ток и сопротивлением токонесущих элементов. Теоретически он ограничен только скоростью с которой продукты реакции выводятся из активной зоны. Затем, по мере «растворения» молекул серной кислоты, ток снижается.

4) Почему плотность электролита определяет степень заряженности аккумулятора?

Во время разряда расходуется серная кислота из электролита и одновременно в электролит выделяется вода. Поэтому по мере разряда свинцового аккумулятора уменьшается концентрация серной кислоты, из-за чего плотность электролита понижается. При заряде происходят обратные химические реакции – в электролит выделяется серная кислота и расходуется вода. При этом плотность электролита по мере заряда возрастает. Поскольку при разрядах и зарядах изменяется плотность электролита, то по ее величине можно судить о степени заряженности аккумулятора, чем и пользуются на практике.

Повышенный саморазряд

Саморазряд батарей в эксплуатации считается повышенным, если он превышает 1 % емкости в сутки. Возникает в случаях:

· попадания посторонних примесей в электролит

· утечки тока по смоченной электролитом или загрязненной поверхности аккумуляторов

· замыкания пластин осыпавшейся активной массой

Вредные примеси, особенно металлы, в электролите увеличивают саморазряд, разрушают активную массу и решетки пластин. Крупицы постороннего металла, попадая на отрицательные пластины, образу­ют с губчатым свинцом и электролитом много местных первичных короткозамкнутых элементов, «паразитные» токи которых разряжают пластины. При этом выделяются пузырьки газа, служащие призна­ком повышенного саморазряда.

Загрязненный электролит выливают из аккумуляторов, пред­варительно разрядив током 0,1С20 для перехода металлических при­месей с отрицательных пластин в электролит. Затем тщательно про­мывают несколько раз аккумуляторы дистиллированной водой и заливают свежий электролит, плотность которого соответствует плот­ности слитого или незначительно превышает ее. Батарею ставят на зарядку, а в конце ее корректируют плотность электролита. Поверх­ностный саморазряд определяют по отклонению стрелки вольтметра. Один зажим вольтметра соединяют с выводом аккумулятора, вто­рой — с поверхностью крышки или мастики аккумулятора. Для устранения и предупреждения поверхностного саморазряда необходи­мо регулярно протирать батарею чистой ветошью, смоченной в 10 %-ном водном растворе кальцинированной соды или нашатырного спирта, а затем насухо вытирать чистой тряпкой.

Короткое замыкание пластин

Короткое замыкание пластин в аккумуляторе происходит в результате:

· накопления осадка на дне банки

· образования «наростов» свинца на кромках отрицательных пластин

Признаки короткого замыкания:

· уменьшение плотности электролита и резкое снижение напряжения до нуля при испытании нагрузочной вилкой

· слабое повышение плотности электролита и напряжения при зарядке с одновременным повышением температуры относительно исправных аккумуляторов

Аккумулятор с короткозамкнутыми пла­стинами подлежит ремонту.

Неисправности моноблоков

Неисправности моноблоков встречаются в виде трещин, отколов, пробоин, которые появляются в результате ударов, тряски и небреж­ного обращения. Больше всего подвержены механическим поврежде­ниям пластмассовые моноблоки, особенно при отрицательных темпе­ратурах. Трещины в перегородках бака вызывают короткое замыка­ние через электролит разноименных пластин соседних аккумулято­ров, соединенных между собой межэлементной перемычкой. Пласти­ны разряжаются, при этом плотность электролита в баках с трещи­ной в перегородке будет меньше, чем в остальных, а суммарная ЭДС двух замкнутых электролитом аккумуляторов будет такой же, как ЭДС одного исправного аккумулятора.

Наличие трещины в стенке моноблока или в перегородке легко обнаружить, если с обеих сторон проверяемой перегородки залить, слабый раствор электролита на 10…15 мм ниже верхних кромок ее и поместить разноименные аккумуляторные пластины, соединенные между собой через вольтметр. Отклонение стрелки прибора свидетельствует о наличии трещины в перегородке.

Стартерный электродвигатель

Классический электростартер автомобиля — это устройство, состоящее из электродвигателя (ЭДВ) постоянного тока с последовательной обмоткой возбуждения, который на время пуска двигателя внутреннего сгорания (ДВС) подключается к аккумуляторной батарее (АКБ) с помощью пускового тягового реле (ПТР). Это же реле посредством рычага с вилкой перемещает по оси стартера муфту свободного хода (МСХ) и тем самым механически сочленяет шестерню на валу стартерного электродвигателя непосредственно с венечной шестерней маховика ДВС.

Конструкция автомобильного стартера, при которой вал электродвигателя соединяется прямо с маховиком ДВС, имеет ряд недостатков. Так, передаточное число главного редуктора, состоящего из венечной шестерни маховика и шестерни МСХ, не может быть достаточно высоким. Ограничения накладываются расчетным размером диаметра маховика, а также числом, размером и прочностью зубцов шестерни МСХ. В такой редукторной паре — соотношение зубцов не может быть более 16—18.

Это приводит к необходимости использовать в стартере такой электродвигатель, у которого обороты якоря «мягко» сочетаются с механической нагрузкой на валу. К таким относятся электродвигатели с последовательной обмоткой возбуждения, обладающие мягкой механической характеристикой (рис. 1, а). Именно такие ЭДВ широко применяются в классических электростартерах.

Конструктивным недостатком ЭДВ с последовательным возбуждением является то, что в нем ток возбуждения, равный току якоря, делает обмотку возбуждения громоздкой, сильно нагревающейся, а магнитную систему статора недостаточно эффективной и с низким КПД. Даже при заданном ограничении на время работы, стартер получается тяжелым и больших размеров. Кроме того, ЭДВ с последовательным возбуждением в режиме холостого хода может пойти «вразнос».

19 Устройство и работа тягового реле стартера

Тяговое реле стартера находится над стартером в прочном соединении с ним. При необходимости оно достаточно просто снимается, но сделать это можно только на демонтированном стартере.
Разные производители предлагают реле в двух вариантах: разборное, которое при необходимости можно подвергнуть диагностике, ревизии и ремонту, и неразборное, которое в случае поломки меняется целиком.

Основными частями реле являются:
корпус;
якорь;
магнит с обмотками (втягивающая и удерживающая);
возвратная пружина;
контакты.

После поворота ключа в замке зажигания, в катушке возникает электромагнитное поле на втягивающей обмотке и якорь, притягиваясь, перемещается в сердечник, который посредством рычага вводит в зацепление с венцом маховика рабочую шестерню бендикса.
Как только сердечник достигает крайнего положения, «втягивающий» стартера замыкает пару контактов, которые называют «пятаками». В этот момент включается удерживающая обмотка и подаётся ток на обмотку мотора, который начинает вращать вал и маховик, находящийся в зацеплении с шестернёй.
С пуском мотора контакты в замке зажигания размыкаются, подача электроэнергии на стартер прекращается, и возвратная пружина возвращает якорь в исходное положение, а вместе с ним и шестерню с обгонной муфтой. Вот, собственно, такой принцип работы втягивающего реле стартера.

20 Маркировка свечей зажигания. Что такое калильное число свечи зажигания?

У каждой свечи зажигания есть своя маркировка, по которой можно узнать обо всех ее особенностях. Правда, у каждой компании своя маркировка свечей зажигания, ведь единой системы, к сожалению, не предусмотрели.

Например, маркировка свечей российского производства абсолютно не имеет ничего общей с маркировкой свечей иностранного производства. Например, можно рассмотреть российскую свечу А-У17ДВРМ10. В ней первая буква обозначает резьбу, а в случае с «А» это М14*1,25. Дефис говорит о том, что опорная поверхность плоская, но если на его месте будет бука «К», то значит коническая.

Губчатый свинец что это. Смотреть фото Губчатый свинец что это. Смотреть картинку Губчатый свинец что это. Картинка про Губчатый свинец что это. Фото Губчатый свинец что это

Немного похожая маркировка свечей зажигания ngk. В свече BC P R 6 E S — 11 две первые буквы «BC» говорят о резьбе и размере ключа. Третья буква «P» обозначает особенности конструкции, а в данном случае это смещенный вперед изолятор и наконечник, а четвертая цифра «R» говорит о наличии резистора. Цифра уже стандартно показывает калильное число свечи, буква «E» длину резьбы, буква « S» конструкцию самого электрода, а последние цифры говорят о свечном зазоре.

А вот маркировка свечей зажигания Bosch слегка отличается от предыдущих, ведь перед калильным числом обязательно две буквы, а после него уже три. Первая буква обозначает резьбу, вторая тип свечи зажигания (с полуповерхностным искровым зазором — L, с сопротивлением для подавления радиопомех — R, для маломощных двигателей — S или для гоночных и спортивных автомобилей — M).

Последняя буква в маркировке свечей зажигания Bosch значит материал центрального электрода. Последняя цифра определяет особенности свечи зажигания.

Также, совершенно не похожая на другихмаркировка свечей зажигания denso. Да, первой всегда идет буква, что обозначает диаметр резьбы и размер шестигранника, но за ней сразу стоит цифра калильного числа. Затем следуют четыре буквы, где первая показывает длину резьбы, вторая тип электрода, а третья — внутреннюю конструкцию, а четвертая — конфигурацию зазора. Ну, а в конце идут цифры, обозначающие искровой зазор.

калильное число свечи зажигания

Кали́льное число́ — величина, характеризующая свечу зажигания, пропорциональная среднему давлению, при котором в процессе испытаний свечи на моторной тарировочной установке начинает появляться калильное зажигание (неуправляемый процесс воспламенения рабочей смеси от раскаленных элементов свечи).

Калильное число – это величина, которая показывает время, по истечении которого, свеча достигнет состояния калильного зажигания. Чем больше калильное число, тем свеча меньше нагревается. Соответственно с малым калильным числом будет «горячая» свеча, а с большим «холодная».
Российская промышленность выпускает свечи зажигания с калильными числами 8, 11, 14, 17, 20, 23 и 26. За рубежом не существует единой шкалы калильных чисел
Калильное число (тепловая характеристика):
Горячие свечи 11-14;
Средние свечи 17-19;
Холодные свечи 20 и более;
Унифицированные свечи 11-20

Почему в качестве электродов свинцово-кислотного аккумулятора используется губчатый свинец и двуокись свинца?

В свинцовом аккумуляторе в токообразующихпроцессах участвуют двуокись свинца (диоксид свинца) PbO2 (окислитель) положительного электрода, губчатый свинец Pb (восстановитель) отрицательного электрода и электролит (водный раствор серной кислоты H2SO4). Активные вещества электродов представляют собой относительно жесткую пористую электронопроводящую массу.

При разряде происходит химическая реакция, в результате которой активная масса обоих электродов начнет изменять свой химический состав, преобразуясь из губчатого свинца и его двуокиси в сернокислый свинец (сульфат свинца – PbSO4), а плотность электролита начнет падать. В результате внутри батареи образуется направленное движение ионов и в цепи потечет электрический ток.

3) Поясните физические процессы заряда и разряда аккумулятора.

При разряде аккумулятора генерируется ток за счет осаждения SO4 на пластинах и активная масса как положительного, так и отрицательного электродов превращается в сульфат свинца, в связи с чем снижается концентрация электролита и постепенно повышается внутреннее сопротивление.

При полном разряде плотность электролита снижается 1,10-1,14 г/см и практически вся активная масса превращается в сернокислый свинец (сульфат свинца), который имеет свойство постепенно кристаллизоваться и терять способность к электрохимическим преобразованиям, после чего батарею практически невозможно восстановить. Этот процесс называется «сульфатацией». Поэтому долгое пребывание в состоянии разрядки губительно для аккумулятора. Чтобы избежать «сульфатации» необходимо как можно быстрее произвести зарядку разряженной батареи.

Физические процессы, происходящие при пуске двигателя, отличаются от процессов при медленном разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы.

Процесс зарядки батареи состоит в электрохимическом разложении PbSO4 на электродах под воздействием постоянного тока внешнего источника. Процесс заряда полностью разряженной батареи похож на процесс разряда, как бы развивающийся в обратном направлении. Первоначально ток заряда достаточно велик и ограничен лишь способностью внешнего источника генерировать необходимый ток и сопротивлением токонесущих элементов. Теоретически он ограничен только скоростью с которой продукты реакции выводятся из активной зоны. Затем, по мере «растворения» молекул серной кислоты, ток снижается.

4) Почему плотность электролита определяет степень заряженности аккумулятора?

Во время разряда расходуется серная кислота из электролита и одновременно в электролит выделяется вода. Поэтому по мере разряда свинцового аккумулятора уменьшается концентрация серной кислоты, из-за чего плотность электролита понижается. При заряде происходят обратные химические реакции – в электролит выделяется серная кислота и расходуется вода. При этом плотность электролита по мере заряда возрастает. Поскольку при разрядах и зарядах изменяется плотность электролита, то по ее величине можно судить о степени заряженности аккумулятора, чем и пользуются на практике.

Источник

Способ получения губчатого свинца и приготовления из него аккумуляторных пластин без прессования

ПАТЕНТ НА ИЗОБРЕТЕНИЕ

ОПИСАНИЕ способа получения губчатого свинца и приготовления из него аккумуляторных пластин без прессования.

К патенту А. М. Михайлова, заявленному 2 ноября 1921 года (заяв. свид. № 75156).

О выдаче патента опубликовано 30 января 1926 года. Действие патента распространяется на 15 лет от 15 сентября 1924 г.

Берется на 95 частей глета 15 частей по весу обработанного водородом глицерина. Глет предварительно растирается в мельчайший порошок, отчего зависит, в дальнейшем, получение мелких пор.

Полученная смесь, хорошо растертая до консистенции сметаны, выливается в любые формы: бумажные, деревянные и т. п, По отвердении массы в форме, ее помещают в сосуд для медленного нагревания в безвоздушном пространстве для восстановления ее в губчатый свинец. Наблюдая в специальное окошко, сделанное в сосуде для нагревания, доводят температуру до темно-вишневого цвета.

В заключение охлаждают водою получившийся губчатый свинец, не вынимая его из сосуда, так как он, представляя собою пирофорное вещество, может накалиться на воздухе и сгореть.

По данным автора, удельный вес полученного указанным способом губчатого свинца равняется приблизительно

4,5 и полученные пластины имеют звон, отличаются большой емкостью и довольно прочны, особенно после пропитывания их целлулоидным раствором.

Способ получения губчатого свинца и приготовления из него аккумуляторных пластин без прессования, отличающийся тем, что смесь глета с глицерином, затвердевшую в формах, прокаливают без доступа воздуха до темновишневого каления и затем, также без доступа воздуха, охлаждают.

Источник

Губчатый свинец что это

Принцип работы свинцового аккумулятора

Свинцовые аккумуляторы являются вторичными химическими источниками тока, которые могут использоваться многократно. Активные материалы, израсходованные в процессе разряда, восстанавливаются при последующем заряде.

Химический источник тока представляет собой совокупность реагентов (окислителя и восстановителя) и электролита. Восстановитель (отрицательный электрод) электрохимической системы в процессе токообразующей реакции отдает электроны и окисляется, а окислитель (положительный электрод) восстанавливается.

Электролитом, как правило, является жидкое химическое соединение, обладающее хорошей ионной и малой электронной проводимостью. В свинцовом аккумуляторе в токообразующих процессах участвуют двуокись свинца (диоксид свинца) РЬО2 (окислитель) положительного электрода, губчатый свинец РЬ (восстановитель) отрицательного электрода и электролит (водный раствор серной кислоты H2S04).

Химические реакции в свинцовом аккумуляторе описываются уравнением:

Губчатый свинец что это. Смотреть фото Губчатый свинец что это. Смотреть картинку Губчатый свинец что это. Картинка про Губчатый свинец что это. Фото Губчатый свинец что это

Содержание в электролите серной кислоты и плотность электролита уменьшаются при разряде и увеличиваются при заряде. По плотности электролита судят о степени разряженности свинцового аккумулятора:

Губчатый свинец что это. Смотреть фото Губчатый свинец что это. Смотреть картинку Губчатый свинец что это. Картинка про Губчатый свинец что это. Фото Губчатый свинец что это

Расход кислоты у положительных электродов больше, чем у отрицательных. Если учитывать количество воды, образующейся у положительных электродов, то количество кислоты, необходимое для них в течение разряда, в 1,6 раза больше, чем для отрицательных.

Источник

Физика и химия стартерных автомобильных АКБ

Назначение стартерных аккумуляторных батарей
Теоретические основы преобразования химической энергии в электрическую
Разряд аккумулятора
Заряд аккумулятора
Расход основных токообразующих реагентов
Электродвижущая сила
Внутреннее сопротивление
Напряжение при заряде и разряде
Емкость аккумулятора
Энергия и мощность аккумулятора
Саморазряд аккумулятора


Назначение стартерных аккумуляторных батарей

Батарея предназначена еще и для аварийного электропитания. При отказе генератора, выпрямителя, регулятора напряжения или при обрыве ремня генератора она должна обеспечить работу всех потребителей, необходимых для безопасного движения до ближайшей СТО.

Итак, стартерные аккумуляторные батареи должны удовлетворять следующим основным требованиям:

• обеспечивать нужный для работы стартера разрядный ток, то есть обладать малым внутренним сопротивлением для минимальных внутренних потерь напряжения внутри батареи;

• обеспечивать необходимое количество попыток пуска двигателя с установленной продолжительностью, то есть иметь необходимый запас энергии стартерного разряда;

• иметь достаточно большую мощность и энергию при минимально возможных размерах и массе;

• обладать запасом энергии для питания потребителей при неработающем двигателе или в аварийной ситуации (резервная емкость);

• сохранять необходимое для работы стартера напряжение при понижении температуры в заданных пределах (ток холодной прокрутки);

• сохранять в течение длительного времени работоспособность при повышенной (до 70 «С) температуре окружающей среды;

• принимать заряд для восстановления емкости, израсходованной на пуск двигателя и питание других потребителей, от генератора при работающем двигателе (прием заряда);

• не требовать специальной подготовки пользователей, обслуживания в процессе эксплуатации;

• иметь высокую механическую прочность, соответствующую условиям эксплуатации;

• сохранять указанные рабочие характеристики продолжительное время в процессе эксплуатации (срок службы);

• обладать незначительным саморазрядом;

• иметь невысокую стоимость.

Теоретические основы преобразования химической энергии в электрическую

Химическим источником тока называется устройство, в котором за счет протекания пространственно разделенных окислительно-восстановительных химических реакций их свободная энергия преобразуется в электрическую. По характеру работы эти источники делятся на две группы:

• первичные химические источники тока или гальванические элементы;

• вторичные источники или электрические аккумуляторы.

Прохождение тока через электрохимические системы связано с происходящими при этом химическими реакциями (превращениями). Поэтому между количеством вещества, вступившего в электрохимическую реакцию и подвергшегося превращениям, и количеством затраченного или высвободившегося при этом электричества существует зависимость, которая была установлена Майклом Фарадеем.

Согласно первому закону Фарадея масса вещества, вступившего в электродную реакцию или получившегося в результате ее протекания, пропорциональна количеству электричества, прошедшего через систему.

Согласно второму закону Фарадея, при равном количестве прошедшего через систему электричества массы прореагировавших веществ относятся между собой как их химические эквиваленты.

Выход по току это та часть количества электричества, прошедшего через систему, которая приходится на долю основной рассматриваемой электрохимической реакции

Разряд аккумулятора

Активными веществами заряженного свинцового аккумулятора, принимающими участие в токообразующем процессе, являются:

Часть молекул кислоты в водном растворе всегда диссоциирована на положительно заряженные ионы водорода и отрицательно заряженные сульфат-ионы.

Свинец, который является активной массой отрицательного электрода, частично растворяется в электролите и окисляется в растворе с образованием положительных ионов. Освободившиеся при этом избыточные электроны сообщают электроду отрицательный заряд и начинают движение по замкнутому участку внешней цепи к положительному электроду.

Положительно заряженные ионы свинца вступают в реакцию с отрицательно заряженными сульфат-ионами, с образованием сульфата свинца, который имеет незначительную растворимость и поэтому осаждается на поверхности отрицательного электрода. В процессе разряда аккумулятора активная масса отрицательного электрода преобразуется из губчатого свинца в сернокислый свинец с изменением серого цвета на светло-серый.

Ионы сообщают электроду положительный потенциал и, присоединяя электроны, пришедшие по внешней цепи от отрицательного электрода, восстанавливаются до ионов двухвалентного свинца

Ионы взаимодействуют с ионами, образуя сернокислый свинец, который по указанной выше причине также осаждается на поверхности положительного электрода, как это имело место на отрицательном. Активная масса положительного электрода по мере разряда преобразуется из двуокиси свинца в сульфат свинца с изменением ее цвета из темно-коричневого в светло-коричневый.

В результате разряда аккумулятора активные материалы и положительного, и отрицательного электродов превращаются в сульфат свинца. При этом на образование сульфата свинца расходуется серная кислота и образуется вода из освободившихся ионов, что приводит к снижению плотности электролита при разряде.

Заряд аккумулятора

В электролите у обоих электродов присутствуют в небольших количествах ионы сульфата свинца и воды. Под влиянием напряжения источника постоянного тока, в цепь которого включен заряжаемый аккумулятор, во внешней цепи устанавливается направленное движение электронов к отрицательному выводу аккумулятора.

Двухвалентные ионы свинца у отрицательного электрода нейтрализуются (восстанавливаются) поступившими двумя электронами, превращая активную массу отрицательного электрода в металлический губчатый свинец. Оставшиеся свободными ионы образуют серную кислоту

У положительного электрода под действием зарядного тока двухвалентные ионы свинца отдают два электрона, окисляясь в четырехвалентные. Последние, соединяясь через промежуточные реакции с двумя ионами кислорода, образуют двуокись свинца, которая выделяется на электроде. Ионы и так же, как и у отрицательного электрода, образуют серную кислоту, в результате чего при заряде растет плотность электролита.

Расход основных токообразующих реагентов

Для получения емкости в один ампер-час при разряде аккумулятора необходимо, чтобы в реакцииприняло участие:

• 4,463 г двуокиси свинца

• 3,886 г губчатого свинца

• 3,660 г серной кислоты

При величине номинального напряжения аккумулятора 2 В теоретический удельный расход материалов на единицу энергии равен 5,995 г/Втч, а удельная энергия аккумулятора составит 166,82 Вт-ч/кг.

Однако на практике невозможно добиться полного использования активных материалов, принимающих участие в токообразующем процессе. Примерно половина поверхности активной массы недоступна для электролита, так как служит основой для построения объемного пористого каркаса, обеспечивающего механическую прочность материала. Поэтому реальный коэффициент использования активных масс положительного электрода составляет 45-55 %, а отрицательного 50-65 %. Кроме того, в качестве электролита используется 35-38%-ный раствор серной кислоты. Поэтому величина реального удельного расхода материалов значительно выше, а реальные значения удельной емкости и удельной энергии значительно ниже, чем теоретические.

Электродвижущая сила

Электродвижущей силой (ЭДС) аккумулятора Е называют разность его электродных потенциалов, измеренную при разомкнутой внешней цепи.

ЭДС батареи, состоящей из n последовательно соединенных аккумуляторов.

Следует различать равновесную ЭДС аккумулятора и неравновесную ЭДС аккумулятора в течение времени от размыкания цепи до установления равновесного состояния (период протекания переходного процесса).

ЭДС измеряют высокоомным вольтметром (внутреннее сопротивление не менее 300 Ом/В). Для этого вольтметр присоединяют к выводам аккумулятора или батареи. При этом через аккумулятор (батарею) не должен протекать зарядный или разрядный ток.

Равновесная ЭДС свинцового аккумулятора, как и любого химического источника тока, зависит от химических и физических свойств веществ, принимающих участие в токообразующем процессе, и совершенно не зависит от размеров и формы электродов, а также от количества активных масс и электролита. Вместе с тем в свинцовом аккумуляторе электролит принимает непосредственное участие в токообразующем процессе на аккумуляторных электродах и изменяет свою плотность в зависимости от степени заряженности аккумуляторов. Поэтому равновесная ЭДС, которая в свою очередь является функцией плотности

Изменение ЭДС аккумулятора от температуры весьма мало и при эксплуатации им можно пренебречь.

Внутреннее сопротивление

Сопротивление, оказываемое аккумулятором протекающему внутри него току (зарядному или разрядному), принято называть внутренним сопротивлением аккумулятора.

Сопротивление активных материалов положительного и отрицательного электродов, а также сопротивление электролита изменяются в зависимости от степени заряженности аккумулятора. Кроме того, сопротивление электролита весьма существенно зависит от температуры.

Поэтому омическое сопротивление также зависит от степени заряженности батареи и температуры электролита.

Сопротивление поляризации зависит от силы разрядного (зарядного) тока и температуры и не подчиняется закону Ома.

Внутреннее сопротивление одного аккумулятора и даже аккумуляторной батареи, состоящей из нескольких последовательно соединенных аккумуляторов, незначительно и составляет в заряженном состоянии всего несколько тысячных долей Ома. Однако в процессе разряда оно существенно изменяется.

По мере разряда аккумулятора плотность электролита снижается от 1,28 г/см3 до 1,09 г/см3, что приводит к снижению его электропроводности почти в 2,5 раза. В результате омическое сопротивление аккумулятора по мере разряда увеличивается. В разряженном состоянии сопротивление достигает значения, более чем в 2 раза превышающего его величину в заряженном состоянии.

Напряжение при заряде и разряде

При заряде аккумулятора напряжение на его выводах должно быть больше его ЭДС на сумму внутренних потерь.

В начале заряда происходит скачок напряжения на величину омических потерь внутри аккумулятора, а затем резкое повышение напряжения за счет потенциала поляризации, вызванное в основном быстрым увеличением плотности электролита в порах активной массы. Далее происходит медленный рост напряжения, обусловленный главным образом ростом ЭДС аккумулятора вследствие увеличения плотности электролита.

После прекращения заряда, то есть отключения внешнего источника, напряжение на выводах аккумулятора резко снижается до значения его неравновесной ЭДС, или на величину омических внутренних потерь. Затем происходит постепенное снижение ЭДС (вследствие уменьшения плотности электролита в порах активной массы), которое продолжается до полного выравнивания концентрации электролита в объеме аккумулятора и порах активной массы, что соответствует установлению равновесной ЭДС.

При разряде аккумулятора напряжение на его выводах меньше ЭДС на величину внутреннего падения напряжения.

В начале разряда напряжение аккумулятора резко падает на величину омических потерь и поляризации, обусловленной снижением концентрации электролита в порах активной массы, то есть концентрационной поляризации. Далее при установившемся (стационарном) процессе разряда происходит снижение плотности электролита в объеме аккумулятора, обусловливающее постепенное снижение разрядного напряжения. Одновременно происходит изменение соотношения содержания сульфата свинца в активной массе, что также вызывает повышение омических потерь. При этом частицы сульфата свинца (имеющего примерно втрое больший объем в сравнении с частицами свинца и его двуокиси, из которых они образовались) закрывают поры активной массы, чем препятствуют прохождению электролита в глубину электродов.

Это вызывает усиление концентрационной поляризации, приводящее к более быстрому снижению разрядного напряжения.

При прекращении разряда напряжение на выводах аккумулятора быстро повышается на величину омических потерь, достигая значения неравновесной ЭДС. Дальнейшее изменение ЭДС вследствие выравнивания концентрации электролита в порах активных масс и в объеме аккумулятора приводит к постепенному установлению значения равновесной ЭДС.

Напряжение аккумулятора при его разряде определяется в основном температурой электролита и силой разрядного тока. Как сказано выше, сопротивление свинцового аккумулятора (батареи) незначительно и в заряженном состоянии составляет всего несколько миллиОм. Однако при токах стартерного разряда, сила которых в 4-7 раз превышает значение номинальной емкости, внутреннее падение напряжения оказывает существенное влияние на разрядное напряжение. Увеличение омических потерь с понижением температуры связано с ростом сопротивления электролита. Кроме того, резко возрастает вязкость электролита, что затрудняет процесс диффузии его в поры активной массы и повышает концентрационную поляризацию (то есть увеличивает потери напряжения внутри аккумулятора за счет снижения концентрации электролита в порах электродов).

При токе более 60 А зависимость напряжения разряда от силы тока является практически линейной при всех температурах.

Среднее значение напряжения аккумулятора при заряде и разряде определяют как среднее арифметическое значений напряжения, измеренных через равные промежутки времени.

Емкость аккумулятора

Разрядная емкость, на которую рассчитан аккумулятор и которая указывается изготовителем, называется номинальной емкостью.

Кроме нее, важным показателем является также емкость, сообщаемая батарее при заряде.

Для получения емкости в 1 А-ч, как указывалось выше, теоретически необходимо 4,463 г двуокиси свинца, 3,886 г губчатого свинца и 3,66 г серной кислоты. Теоретический удельный расход активных масс электродов составляет 8,32 г/Ач. В реальных аккумуляторах удельный расход активных материалов при 20-часовом режиме разряда и температуре электролита 25 °С составляет от 15,0 до 18,5 г/А-ч, что соответствует коэффициенту использования активных масс 45-55 %. Следовательно, практический расход активной массы превышает теоретические величины в 2 и более раза.

На степень использования активной массы, а следовательно, и на величину разрядной емкости оказывают влияние следующие основные факторы.

Пористость активной массы. С увеличением пористости улучшаются условия диффузии электролита в глубину активной массы электрода и увеличивается истинная поверхность, на которой протекает токообразующая реакция. С ростом пористости увеличивается разрядная емкость. Величина пористости зависит от размеров частиц свинцового порошка и рецептуры приготовления активных масс, а также от применяемых добавок. Причем повышение пористости приводит к уменьшению долговечности вследствие ускорения процесса деструкции высокопористых активных масс. Поэтому величина пористости выбирается производителями с учетом не только высоких емкостных характеристик, но и обеспечения необходимой долговечности батареи в эксплуатации. В настоящее время оптимальной считается пористость в пределах 46-60 %, в зависимости от назначения батареи.

Толщина электродов. С уменьшением толщины снижается неравномерность нагруженности наружных и внутренних слоев активной массы электрода, что способствует увеличению разрядной емкости. У более толстых электродов внутренние слои активной массы используются весьма незначительно, особенно при разряде большими токами. Поэтому с ростом разрядного тока различия в емкости аккумуляторов, имеющих электроды различной толщины, резко уменьшаются.

Пористость и рациональность конструкции материала сепаратора. С ростом пористости сепаратора и высоты его ребер увеличивается запас электролита в межэлектродном зазоре и улучшаются условия его диффузии.

Плотность электролита. Влияет на емкость аккумулятора, и срок его службы. При повышении плотности электролита емкость положительных электродов увеличивается, а емкость отрицательных, особенно при отрицательной температуре, снижается вследствие ускорения пассивации поверхности электрода. Повышенная плотность также отрицательно сказывается на сроке службы аккумулятора вследствие ускорения коррозионных процессов на положительном электроде. Поэтому оптимальная плотность электролита устанавливается исходя из совокупности требований и условий, в которых эксплуатируется батарея. Так, например, для стартерных батарей, работающих в умеренном климате, рекомендована рабочая плотность электролита 1,26-1,28 г/см3, а для районов с жарким (тропическим) климатом 1,22-1,24 г/см3.

Сила разрядного тока, которым аккумулятор должен непрерывно разряжаться в течение заданного времени (характеризует режим разряда). Режимы разряда условно разделяют на длительные и короткие. При длительных режимах разряд происходит малыми токами в течение нескольких часов. Например, 5-, 10- и 20-часовой разряды. При коротких или стартерных разрядах сила тока в несколько раз больше номинальной емкости аккумулятора, а разряд длится несколько минут или секунд. При увеличении разрядного тока скорость разряда поверхностных слоев активной массы возрастает в большей степени, чем глубинных. В результате рост сернокислого свинца в устьях пор происходит быстрее, чем в глубине, и пора закупоривается сульфатом раньше, чем успевает прореагировать ее внутренняя поверхность. Вследствие прекращения диффузии электролита внутрь поры реакция в ней прекращается. Таким образом, чем больше разрядный ток, тем меньше емкость аккумулятора, а следовательно, и коэффициент использования активной массы.

Для оценки пусковых качеств батарей их емкость характеризуется также количеством прерывистых стартерных разрядов (например, длительностью 10-15 с с перерывами между ними по 60 с). Емкость, которую отдает батарея при прерывистых разрядах, превышает емкость при непрерывном разряде тем же током, особенно при стартерном режиме разряда.

В настоящее время в международной практике оценки емкостных характеристик стартерных аккумуляторов применяется понятие «резервная» емкость. Она характеризует время разряда батареи (в минутах) при силе разрядного тока 25 А независимо от номинальной емкости батареи. По усмотрению производителя допускается устанавливать величину номинальной емкости при 20-часовом режиме разряда в ампер-часах или по резервной емкости в минутах.

Температурный коэффициент емкости а показывает изменение емкости в процентах при изменении температуры на 1 °С.

При испытаниях сравнивают разрядную емкость, полученную при длительном режиме разряда с величиной номинальной емкости, определяемой при температуре электролита +25 °С.

Температура электролита при определении емкости на длительном режиме разряда в соответствии с требованиями стандартов должна находиться в пределах от +18 °С до +27 °С.

Степень заряженности. С увеличением степени заряженности при прочих равных условиях емкость увеличивается и достигает своего максимального значения при полном заряде батарей. Это обусловлено тем, что при неполном заряде количество активных материалов на обоих электродах, а также плотность электролита не достигают своих максимальных значений.

Энергия и мощность аккумулятора

Энергия аккумулятора W выражается в Ватт-часах и определяется произведением его разрядной (зарядной) емкости на среднее разрядное (зарядное) напряжение.

Так как с изменением температуры и режима разряда меняются емкость аккумулятора и его разрядное напряжение, то при понижении температуры и увеличении разрядного тока энергия аккумулятора уменьшается еще более значительно, чем его емкость.

Количество энергии, отдаваемой аккумулятором в единицу времени, называется его мощностью. Ее можно определить как произведение величины разрядного тока на среднее разрядное напряжение.

Саморазряд аккумулятора

Саморазрядом называют снижение емкости аккумуляторов при разомкнутой внешней цепи, то есть при бездействии. Это явление вызвано окислительно-восстановительными процессами, самопроизвольно протекающими как на отрицательном, так и на положительном электродах.

Саморазряду особенно подвержен отрицательный электрод вследствие самопроизвольного растворения свинца (отрицательной активной массы) в растворе серной кислоты.

Саморазряд отрицательного электрода сопровождается выделением газообразного водорода. Скорость самопроизвольного растворения свинца существенно возрастает с повышением концентрации электролита. Повышение плотности электролита с 1,27 до 1,32 г/см3 приводит к росту скорости саморазряда отрицательного электрода на 40 %.

Наличие примесей различных металлов на поверхности отрицательного электрода оказывает весьма значительное влияние (каталитическое) на увеличение скорости саморастворения свинца (вследствие снижения перенапряжения выделения водорода). Практически все металлы, встречающиеся в виде примесей в аккумуляторном сырье, электролите и сепараторах, или вводимые в виде специальных добавок, способствуют повышению саморазряда. Попадая на поверхность отрицательного электрода, они облегчают условия выделения водорода.

Часть примесей (соли металлов с переменной валентностью) действуют как переносчики зарядов с одного электрода на другой. В этом случае ионы металлов восстанавливаются на отрицательном электроде и окисляются на положительном (такой механизм саморазряда приписывают ионам железа).

Саморазряд положительного активного материала обусловлен протеканием реакции.

Скорость данной реакции также возрастает с ростом концентрации электролита.

Так как реакция протекает с выделением кислорода, то скорость ее в значительной степени определяется кислородным перенапряжением. Поэтому добавки, снижающие потенциал выделения кислорода (например, сурьма, кобальт, серебро), будут способствовать росту скорости реакции саморастворения двуокиси свинца. Скорость саморазряда положительного активного материала в несколько раз ниже скорости саморазряда отрицательного активного материала.

Другой причиной саморазряда положительного электрода является разность потенциалов материала токоотвода и активной массы этого электрода. Возникающий вследствие этой разности потенциалов гальванический микроэлемент превращает при протекании тока свинец токоотвода и двуокись свинца положительной активной массы в сульфат свинца.

Саморазряд может возникать также, когда аккумулятор снаружи загрязнен или залит электролитом, водой или другими жидкостями, которые создают возможность разряда через электропроводную пленку, находящуюся между полюсными выводами аккумулятора или его перемычками. Этот вид саморазряда не отличается от обычного разряда очень малыми токами при замкнутой внешней цепи и легко устраним. Для этого необходимо содержать поверхность батарей в чистоте.

В процессе эксплуатации саморазряд не остается постоянным и резко усиливается к концу срока службы.

Снижение саморазряда возможно за счет повышения перенапряжения выделений кислорода и водорода на аккумуляторных электродах.

Для этого необходимо, во-первых, использовать возможно более чистые материалы для производства аккумуляторов, уменьшать количественное содержание легирующих элементов в аккумуляторных сплавах, использовать только

чистую серную кислоту и дистиллированную (или близкую к ней по чистоте при других методах очистки) воду для приготовления всех электролитов, как при производстве, так и при эксплуатации. Например, благодаря снижению содержания сурьмы в сплаве токо-отводов с 5 % до 2 % и использованию дистиллированной воды для всех технологических электролитов, среднесуточный саморазряд снижается в 4 раза. Замена сурьмы на кальций позволяет еще больше снизить скорость саморазряда.

Применение общей крышки и скрытых межэлементных соединений в значительной степени снижает скорость саморазряда от токов утечки, так как значительно снижается вероятность гальванической связи между далеко отстоящими полюсными выводами.

Иногда саморазрядом называют быструю потерю емкости вследствие короткого замыкания внутри аккумулятора. Такое явление объясняется прямым разрядом через токопроводящие мостики, образовавшиеся между разноименными электродами.

Применение сепараторов-конвертов в необслуживаемых аккумуляторах

исключает возможность образования коротких замыканий между разноименными электродами в процессе эксплуатации. Однако такая вероятность остается вследствие возможных сбоев в работе оборудования при массовом производстве. Обычно такой дефект выявляется в первые месяцы эксплуатации и батарея подлежит замене по гарантии.

Обычно степень саморазряда выражают в процентах потери емкости за установленный период времени.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *