мапить что это значит
Чернобровов Алексей Аналитик
Big Data Mapping: что такое маппирование больших данных
В этой статье рассмотрено, что такое маппирование больших данных, как это связано с Data Science, когда и как часто выполняется этот процесс, а также, какие программные инструменты позволяют автоматизировать Big Data mapping.
Что такое маппирование данных и где это используется
Представим, что в одной из корпоративных систем сведения о семейном положении сотрудника хранятся так, что «1» в поле «дети» означает их наличие. В другой системе эти же данные записаны с помощью значения «True», а в третьей – словом «да». Таким образом, разные системы для обозначения одних и тех же данных используют разные отображения. Чтобы привести информацию к единообразию, следует сопоставить обозначения одной системы обозначениям в других источниках, т.е. выполнить процедуру мэппинга данных (от английского map – сопоставление). В широком смысле маппирование – это определение соответствия данных между разными семантиками или представлениями одного объекта в разных источниках. На практике этот термин чаще всего используется для перевода или перекодировки значений [1].
Дисциплина управления данными, Data Management, трактует маппинг как процесс создания отображений элементов данных между двумя различными моделями, который выполняется в начале следующих интеграционных задач [2]:
Таким образом, маппирование данных представляет собой процесс генерации инструкций по объединению информации из нескольких наборов данных в единую схему, например, конфигурацию таблицы. Поскольку схемы данных в разных источниках обычно отличаются друг от друга, информацию из них следует сопоставить, выявив пересечение, дублирование и противоречия [3].
С прикладной точки зрения можно следующие приложения маппинга данных [4]:
В Big Data мэппинг выполняется при загрузке информации в озеро данных (Data Lake) и корпоративное хранилище (DWH, Data Warehouse). Чем Data Lake отличается от DWH, рассмотрено здесь. В этом случае маппинг реализуется в рамках ETL-процесса (Extract, Transform, Load) на этапе преобразования. При этом настраивается соответствие исходных данных с целевой моделью (рис. 1). В случае реляционных СУБД для идентификации одной сущности в разных представлениях нужно с ключами таблиц и настройкой отношений (1:1, *:1, 1:* или *:*) [5].
Рис.1. Маппирование данных при консолидации таблиц
В Data Science маппирование данных входит в этап их подготовки к ML-моделированию, когда выполняется формирование датасета в виде матрицы значений для обработки соответствующими алгоритмами. В частности, когда Data Scientist обогащает исходный датасет данными из сторонних источников, он занимается маппингом данных. Проводить процедуру дата мэппинга можно вручную или автоматически с помощью соответствующих подходов и инструментов, которые рассмотрены далее.
Особенности процесса дата мэппинга
На практике трудоемкость мэппинга зависит от следующих факторов [3]:
Облегчить процесс маппирования можно за счет метаданных – сведениях о признаках и свойствах объектов, которые позволяют автоматически искать и управлять ими в больших информационных потоках. В частности, если каждое приложение будет выполнять публикацию метаданных, что позволит создать их стандартизированный реестр, то маппинг будет полностью автоматизированным [2]. Однако в большинстве случаев процесс мапирования данных не полностью автоматизирован и состоит из следующих этапов [4]:
При работе с большими объемами данных выделяют 3 основных подхода к маппированию [2]:
Также стоит упомянуть полуавтоматическое маппирование в виде конвертирования схем данных, когда специализированная программа сравнивает источники данных и целевую схему для консолидации. Затем разработчик проверяет схему маппирования и вносит исправления, где это необходимо. Далее программа конвертирования схем данных автоматически генерирует код на C++, C # или Java для загрузки данных в систему приемник (рис. 3) [3].
Рис. 3. Конвертирование схем данных в процессе мэппинга
Далее рассмотрим, какие инструментальные средства реализуют вышеперечисленные подходы.
Инструменты маппирования больших данных
Как и большинство прикладных решений, все средства для маппинга данных можно разделить на 3 категории [6]:
Большинство перечисленных продуктов поддерживают все 3 подхода к маппированию: ручной (GUI и кодирование), data-driven и семантический. Однако, семантический мэппинг требует наличия реестров метаданных, что имеется далеко не в каждом предприятии. А публичные реестры метаданных, такие как национальные, отраслевые или городские репозитории [7] не всегда напрямую коррелируют, например, с задачами построения локального DWH. Но, наряду с открытыми государственными данными и другими публичными датасетами, их можно использовать в исследовательских DS-задачах.
При выборе конкретного инструмента для маппинга больших данных стоит учитывать следующие факторы:
Резюме
Итак, маппирование данных – это важная часть процесса работы с данными, в том числе и для Data Scientist’а. Эта процедура выполняется в рамках подготовки к ML-моделированию, в частности, при обогащении датасетов. В случае одноразового формирования датасета из нескольких разных источников сопоставление данных можно выполнить вручную или с помощью самописного Python-скрипта. Однако, такой подход не применим в промышленной интеграции нескольких информационных систем или построении корпоративных хранилищ и озер данных. Поэтому знание инструментов дата мэппинга пригодится как Data Scientist’у, так и Data Engineer’у. Наконец, сопоставление данных с целью избавления от дублирующихся и противоречивых значений входит в задачи обеспечения качества данных (Data Quality) [4]. В свою очередь, Data Quality относится к области ответственности стратега по данным и инженера по качеству данных. Таким образом, понимание процесса маппирования необходимо каждому Data-специалисту.
java-object-merger — больше чем просто маппер объектов
Всем привет! Хотел бы представить вам новую библиотеку на java для маппинга/мержинга объектов, которую я “скромно” позиционирую как возможную альтернативу dozer-у. Если вы разрабатываете enterprise приложения на java, вам не безразлична эффективность вашей работы, и хочется писать меньше скучного кода, то приглашаю почитать дальше!
UPD. Выложено в центральный репозиторий мавена
Для чего нужны мапперы объектов?
Простой ответ: чтобы копировать данные автоматически из одного объекта в другой. Но тогда вы можете спросить: зачем нужно это копирование? Можно усомниться, что это нужно очень часто. Значит следует дать более развернутый ответ.
В мире энтерпрайз приложений принято бить внутреннюю структуру на слои: слой доступа к базе, бизнес и представление/веб сервиса. В слое доступа к базе как правило обитают объекты мапящиеся на таблицы в базе. Условимся называть их DTO (от Data transfer object). По хорошему, они только переносят данные из таблиц и не содержат бизнес логики. На слое представления/веб сервисов, находятся объекты, доставляющие данные клиенту (браузер / клиенты веб сервисов). Назовем их VO (от View object). VO могут требовать только часть тех данных, которые есть в DTO, или же агрегировать данные из нескольких DTO. Они могут дополнительно заниматься локализацией или преобразованием данных в удобный для представления вид. Так что передавать DTO сразу на представление не совсем правильно. Так же иногда в бизнес слое выделяют бизнес объекты BO (Business object). Они являются обертками над DTO и содержат бизнес логику работы с ними: сохранение, модифицирование, бизнес операции. На фоне этого возникает задача по переносу данных между объектами из разных слоев. Скажем, замапить часть данных из DTO на VO. Или из VO на BO и потом сохранить то что получилось.
Если решать задачу в лоб, то получается примерно такой “тупой” код:
Знакомо? 🙂 Если да, то могу вас обрадовать. Для этой проблемы уже придумали решение.
Мапперы объектов
Придуманы конечно-же не мной. Реализаций на java много. Вы можете ознакомится, к примеру тут.
Вкратце, задача маппера — скопировать все свойства одного объекта в другой, а так же проделать все то же рекурсивно для всех чайлдовых объектов, по ходу делая необходимые преобразование типов, если это требуется.
Мапперы из списка выше — все разные, более или менее примитивные. Самый мощный пожалуй dozer, с ним я работал около 2 лет, и некоторые вещи в нем перестали устраивать. А вялый темп дальнейшей разработки дозера побудили написать свой “велосипед” (да, я знакомился с другими мапперами — для наших требовний они еще хуже).
Чем плох dozer
Какими качествами должен обладать маппер?
Почему merger а не mapper?
java-object-merger отличает от других мапперов одна особенность. Основополагающая идея была в том, чтобы дать возможность создавать снимки объектов (Snapshot) на некоторый момент времени, и потом, сравнивая их, находить различия (Diff) подобно тому, как находим diff между двумя текстами. Причем должна быть возможность просмотра снапшотов и диффов в понятном для человека текстовом виде. Так, чтобы раз взглянув на дифф сразу стали ясны все отличия, а так же как будет изменен целевой объект после применения диффа. Таким образом добиваемся полной прозрачности процесса. Никакой магии и черных ящиков! Создание снапшотов открывает еще один интересный сценарий. Можно сделать снапшот объекта, потом как-то изменив его, сделать новый снапшот — проверить что изменилось, и, при желании, откатить изменения. Кстати дифф можно обойти специальным visitor-ом, и пометить только те изменения, которые хочется применить, а остальные проигнорировать.
Так что можно сказать, что merger — это нечто большее чем просто mapper.
Использование
Программа “Hello world” выглядит примерно так:
Во-первых, видим, что для маппинга необходимо, чтобы у свойства был геттер на обоих объектах. Это нужно для сравнения значений. И сеттер у целевого объекта, чтобы записывать новое значение. Сами свойства должны именоваться одинаково.
Посмотрим же как реализован метод map. Это поможет понять многие вещи о библиотеке.
Если исходный снапшот это бин, и если у него есть identifier, тогда пытаемся найти целевой бин для класса destinationClass используя IBeanFinder-ы [тут createSnapshot(destinationClass, identifier); ]. Мы такие не регистрировали, да и identifier-а нет, значит идем дальше. В противном случает бин создается используя подходящий IObjectCreator [тут createSnapshot(destinationClass) ]. Мы таких тоже не регистрировали, однако в стандартной поставке имеется создатель объектов конструктором по умолчанию — он и используется. Далее у целевого снапшота берется дифф от снапшота источника и применяется к целевому объекту. Все.
Кстати, дифф, для этого простого случая, будет выглядеть так:
Основные аннотации
Преобразования типов
Категории объектов
Производительность
Честно говоря, пока писал библиотеку — о производительности особо не задумывался. Да и изначально в целях высокой производительности не было. Однако, решил замерять время маппинга N раз на один тестовый объект. Исходный код теста. Объект довольно сложный, с полями значениями, дочерними бинами, коллекциями и мапами. Для сравнения взял dozer последней на текущий момент версии 5.4.0. Ожидал, что дозер не оставит никаких шансов. Но получилось совсем наоборот! dozer замапил 5000 тестовых объектов за 32 секунды, а java-object-merger 50000 объектов за 8 секунд. Разница какая-то дикая — в 40 раз…
Применение
java-object-merger был опробован на текущем проекте с моей основной работы (osgi, spring, hibernate, сотни мапящихся классов). Чтобы заменить им дозер полностью ушло менее 1 дня. По ходу находились некоторые явные косяки, но, после исправления, все основные сценарии работали нормально.
Ленивые снапшоты
Практичные способы маппинга данных в Kotlin
Маппинг данных – один из способов для разделения кода приложения на слои. Маппинг широко используется в Android приложениях. Популярный пример архитектуры мобильного приложения Android-CleanArchitecture использует маппинг как в оригинальной версии (пример маппера из CleanArchitecture), так и в новой Kotlin версии (пример маппера).
Маппинг позволяет развязать слои приложения (например, отвязаться от API), упростить и сделать код более наглядным.
Пример полезного маппинга изображен на схеме:
Для примера модели упрощены. Person содержит Salary в обоих слоях приложения.
В настоящем коде, если у вас одинаковые модели, возможно, стоит пересмотреть слои приложения и не использовать маппинг.
Метод №1: Методы-мапперы
Самый быстрый и простой метод. Именно он используется в CleanArchitecture Kotlin (пример маппинга).
Такой код быстрее писать и проще модифицировать – объявления полей и их использование находятся в одном месте. Не надо бегать по проекту и модифицировать разные файлы при изменении полей класса.
Еще проблема может возникнуть если по требованиям архитектуры слои приложения не могут знать друг о друге: т.е. в классе Src слоя нельзя работать со слоем Dst и наоборот. В этом случае такой вариант маппинга использовать не получится.
В рассмотренном примере слой Src зависим от слоя Dst и может создавать классы этого слоя. Для обратной ситуации (когда Dst зависим от Src ) подойдет вариант со статическими методами-фабриками:
Маппинг находится внутри классов Dst слоя, значит эти классы не раскрывают все свои свойства и структуру использующему их коду.
Если в приложении один слой зависим от другого и осуществляется передача данных между слоями приложения в обоих направлениях, статические методы-фабрики логично использовать вместе с методами-мапперами.
Резюме метода маппинга:
+ Быстро писать код, маппинг всегда под рукой
+ Легкая модификация
+ Низкая связность кода
— Затруднено Unit-тестирование (нужны моки)
— Не всегда позволено архитектурой
Метод №2: функции-мапперы
Размещение маппера и классов, с которыми он работает, в разных местах проекта не всегда удобно. При частой модификации класса придётся искать и изменять разные файлы в разных местах.
Резюме метода маппинга:
+ Простое Unit-тестирование
— Затруднена модификация
— Требуются открытые поля у классов с данными
Метод № 3: Функции-расширения
При этом стоит учесть, что функции расширения могут приводить к неожиданному поведению из-за своей статической природы: https://kotlinlang.org/docs/reference/extensions.html#extensions-are-resolved-statically
Резюме метода маппинга:
+ Простое Unit-тестирование
— Затруднена модификация
— Требуются открытые поля у классов с данными
Метод №4: Классы-мапперы с интерфейсом
Относительно маппинга в функции у этого примера только один недостаток – необходимость писать немного больше кода.
Резюме метода маппинга:
+ Лучше типизация
— Больше кода
Как и функции-мапперы:
+ Простое Unit-тестирование
— Затруднена модификация
— требует открытые поля у классов с данными
Метод 5: Рефлексия
Метод черной магии. Рассмотрим этот метод на других моделях.
В данном примере EmployeeSrc и EmployeeDst хранят имя в разных форматах. Мапперу нужно только составить имя для новой модели. Остальные поля обработаются автоматически, без написания кода (вариант else в when ).
Метод может быть полезен, например, если у вас большие модели с кучей полей и поля в основном совпадают у одних и тех же моделей из разных слоев.
Большая проблема возникнет, например, если вы добавите обязательные поля в Dst и его случайно не окажется в Src или в маппере: cлучится IllegalArgumentException в runtime. Также рефлексия имеет проблемы с производительностью.
Резюме метода маппинга:
+ меньше кода
+ простое Unit-тестирование
— опасен
— может негативно сказаться на производительности
Выводы
Такие выводы можно сделать из нашего рассмотрения:
Методы-мапперы — наглядный код, быстрее писать и поддерживать
Функции-мапперы и функции расширения – просто тестировать маппинг.
Классы мапперы с интерфейсом — просто тестировать маппинг и яснее код.
Рефлексия – подходит для нестандартных ситуаций.