медианный представитель в статистике что такое

Контрольная работа: Мода. Медиана. Способы их расчета

На тему: «Мода. Медиана. Способы их расчета»

Средние величины и связанные с ними показатели вариации играют в статистике очень большую роль, что обусловлено предметом ее изучения. Поэтому данная тема является одной из центральных в курсе.

Средняя является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности.

Изучая общественные явления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью средних можно сравнивать между собой различные совокупности по варьирующим признакам.

Средние, которые применяются в статистике, относятся к классу степенных средних. Из степенных средних наиболее часто применяется средняя арифметическая, реже – средняя гармоническая; средняя гармоническая применяется только при исчислении средних темпов динамики, а средняя квадратическая – только при исчислении показателей вариации.

Средняя арифметическая есть частное от деления суммы вариант на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности образуется как сумма значений признака у отдельных ее единиц. Средняя арифметическая – наиболее распространенный вид средних, так как она соответствует природе общественных явлений, где объем варьирующих признаков в совокупности чаще всего образуется именно как сумма значений признака у отдельных единиц совокупности.

По своему определяющему свойству средняя гармоническая должна применяться тогда, когда общий объем признака образуется как сумма обратных значений вариант. Ее применяют тогда, когда в зависимости от имеющего материала веса приходиться не умножать, а делить на варианты или, что то же самое, умножать на обратное их значение. Средняя гармоническая в этих случаях – это величина обратная средней арифметической из обратных значений признака.

К средней гармонической следует прибегать в тех случаях, когда в качестве весов применяются не единицы совокупности – носители признака, а произведения этих единиц на значение признака.

1. Определение моды и медианы в статистике

Средние арифметическая и гармоническая являются обобщающими характеристиками совокупности по тому или иному варьирующему признаку. Вспомогательными описательными характеристиками распределения варьирующего признака являются мода и медиана.

Модой в статистике называется величина признака (варианта), которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Медианной в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам, по обе стороны от нее (вверх и вниз) находится одинаковое количество единиц совокупности.

Мода и медиана в отличии от степенных средних являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака. Если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров, размер ботинок, пользующийся наибольшим спросом у потребителей, и т.д., в этих случаях прибегают к моде.

Медиана интересна тем, что показывает количественную границу значение варьирующего признака, которую достигла половина членов совокупности. Пусть средняя заработная плата работников банка составила 650000 руб. в месяц. Эта характеристика может быть дополнена, если мы скажем, что половина работников получила заработную плату 700000 руб. и выше, т.е. приведем медиану. Мода и медиана являются типичными характеристиками в тех случаях, когда взяты совокупности однородные и большой численности.

2. Нахождение моды и медианы в дискретном вариационном ряду

Найти моду и медиану в вариационном ряду, где значения признака заданы определенными числами, не представляет большой трудности. Рассмотрим таблицу 1. с распределение семей по числу детей.

Таблица 1. Распределение семей по числу детей

Источник

Медиана (статистика)

Также медиану можно определить для случайных величин: в этом случае она делит пополам распределение. Грубо говоря, медианой случайной величины является такое число, что вероятность получить значение случайной величины справа от него равна вероятности получить значение слева от него (и они обе равны 1/2); более точное определение см. ниже.

Можно также сказать, что медиана является 50-м персентилем, 0,5-квантилем или вторым квартилем выборки или распределения.

Связанные понятия

Для определения средних или наиболее типичных значений совокупности используются показатели центра распределения. Основные из них — математическое ожидание, среднее арифметическое, среднее геометрическое, среднее гармоническое, среднее степенное, взвешенные средние, центр сгиба, медиана, мода.

Упоминания в литературе

Связанные понятия (продолжение)

Центра́льные преде́льные теоре́мы (Ц. П. Т.) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Т-критерий Вилкоксона — (также используются названия Т-критерий Уилкоксона, критерий Вилкоксона, критерий знаковых рангов Уилкоксона, критерий суммы рангов Уилкоксона) непараметрический статистический тест (критерий), используемый для проверки различий между двумя выборками парных или независимых измерений по уровню какого-либо количественного признака, измеренного в непрерывной или в порядковой шкале.. Впервые предложен Фрэнком Уилкоксоном. Другие названия — W-критерий Вилкоксона, критерий знаковых.

Источник

Урок по теории вероятностей и статистике «Медиана» (7-й класс)

Разделы: Математика

Класс: 7

Цель урока: сформировать у учащихся представление о медиане набора чисел и умение вычислять ее для несложных числовых наборов, закрепление понятия среднего арифметического набора чисел.

Тип урока: объяснение нового материала.

Оборудование: доска, учебник под ред. Ю.Н Тюрина “Теория вероятностей и статистика”, компьютер с проектором.

Ход урока

1. Организационный момент.

Сообщить тему урока и сформулировать его цели.

2. Актуализация прежних знаний.

Проверка домашнего задания с помощью проектора (Приложение 1):

3. Изучение нового материала.

На предыдущем уроке мы познакомились с такой статистической характеристикой как среднее арифметическое набора чисел. Сегодня мы посвятим урок еще одной статистической характеристике – медиане.

Не только среднее арифметическое показывает, где на числовой прямой располагаются числа какого-либо набора и где их центр. Другим показателем является медиана.

Медианой набора чисел называется такое число, которое разделяет набор на две равные по численности части. Вместо “медиана” можно было бы сказать “середина”.

Сначала на примерах разберем, как найти медиану, а затем дадим строгое определение.

Рассмотрим следующий устный пример с применением проектора (Приложение 2)

В конце учебного года 11 учеников 7-го класса сдали норматив по бегу на 100 метров. Были зафиксированы следующие результаты:

Результат в секундах

Название: Мода. Медиана. Способы их расчета
Раздел: Рефераты по экономике
Тип: контрольная работа Добавлен 09:00:41 04 сентября 2010 Похожие работы
Просмотров: 47810 Комментариев: 22 Оценило: 9 человек Средний балл: 4 Оценка: 4 Скачать
Данила

После того как ребята пробежали дистанцию, к преподавателю подошел Петя и спросил, кокой у него результат.

“Самый средний результат: 16,9 секунды”, – ответил учитель

“Почему?” – удивился Петя. – Ведь среднее арифметическое всех результатов – примерно 18,3 секунды, а я пробежал на секунду с лишним лучше. И вообще, результат Кати (18,4) гораздо ближе к среднему, чем мой”.

“Твой результат средний, так как пять человек пробежали лучше, чем ты, и пять – хуже. То есть ты как раз посередине”, – сказал учитель. [ 2 ]

Далее предложить учащимся самостоятельно рассмотреть по учебнику примеры 1,2,3 и сформулировать алгоритм нахождения медианы набора чисел.

Предложить учащимся самостоятельно сформулировать определение медианы набора чисел, затем прочитать в учебнике два определения медианы ( стр. 50), далее разобрать примеры 4 и 5 учебника (стр.50-52)

Обратить внимание учащихся на важное обстоятельство: медиана практически не чувствительна к значительным отклонениям отдельных крайних значений наборов чисел. В статистике это свойство называется устойчивостью. Устойчивость статистического показателя – очень важное свойство, оно страхует нас от случайных ошибок и отдельных недостоверных данных.

4. Закрепление изученного материала.

Решение номеров из учебника к п.11 “Медиана”.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое=( 1+3+5+7+9):5=25:5=5

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое= Ме

Набор чисел: 1,3,5,7,14.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое=( 1+3+5+7+14):5=30:5=6

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое> Ме

а) Набор чисел: 3,4,11,17,21

б) Набор чисел: 17,18,19,25,28

в) Набор чисел:25, 25, 27, 28, 29, 40, 50

Вывод : медиана набора чисел, состоящего из нечетного числа членов равна числу, стоящему посередине.

а) Набор чисел:2, 4, 8, 9.

Медиана набора чисел, содержащего четное число членов равна полусумме двух чисел, стоящих посередине.

Ученик получил в течении четверти следующие оценки по алгебре:

5, 4, 2, 5, 5, 4, 4, 5, 5, 5.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое= ( 5+4+2+5+5+4+4+5+5+5): 10=44:10 = 4,4

Упорядочим набор чисел: 2,4,4,4,5,5,5,5,5,5

Всего 10 чисел, чтобы найти медиану надо взять два средних числа и найти их полусумму.

Вопрос к учащимся: Если бы вы были учителем, какую бы вы поставили оценку за четверть этому ученику? Ответ обоснуйте.

Президент компании получает зарплату 300000 руб. три его заместителя получают по 150000 руб., сорок служащих – по 50000 руб. и зарплата уборщицы составляет 10000 руб. Найдите среднее арифметическое и медиану зарплат в компании. Какую из этих характеристик выгоднее использовать президенту в рекламных целях?

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое= ( 300000+3·150000+40·50000+10000):(1+3+40+1) = 2760000:45медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое61333,33 (руб.)

В рекламных целях выгоднее использовать среднее арифметическое зарплат, т.к. она выше.

Задача 3. (Предложить учащимся решить самостоятельно, задачу спроецировать с помощью проектора)

В таблице показан примерный объем воды крупнейших озер и водохранилищ России в куб. км. (Приложение 3) [ 4 ]

Объем воды в куб. км

Ладожское озеро900
Онежское озеро290
Озеро Байкал23000
Рыбинское водохранилище30
Куйбышевское водохранилище60
Цимлянское водохранилище20
Саяно-Шушенское водохранилище30
Волгоградское водохранилище30
Красноярское водохранилище60
Братское водохранилище170

А) Найдите средний объем воды в данных водоемах (среднее арифметическое);

Б) Найдите объем воды в среднем по величине водоеме (медиану данных);

В) По вашему мнению, какая из этих характеристик – среднее арифметическое или медиана – лучше описывает объем типичного крупного водоема России? Ответ объясните.

в) Медиана, т.к. данные содержат значения сильно отличающиеся от всех прочих.

А) Сколько чисел в наборе, если его медианой служит ее девятый член?

Б) Сколько чисел в наборе, если его медианой служит среднее арифметическое 7-го и 8-го членов?

Г) Каждое из чисел набора увеличили на 3. Что произойдет со средним арифметическим и медианой?

Конфеты в магазине продают на вес. Чтобы узнать, сколько конфет содержится в одном килограмме, Маша решила найти вес одной конфеты. Она взвесила несколько конфет и получила следующие результаты:

12, 13, 14, 12, 15, 16, 14, 13, 11.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое= 13,33

Для оценки веса одной конфеты пригодны обе характеристики, т.к. они не сильно отличаются друг от друга.

Источник

Медиана в статистике

Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (среднее арифметическое) или максимальную частоту (мода), но и как некоторую отметку (значение в совокупности), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. Половина исходных данных меньше этой отметки, а половина – больше. Это и есть медиана.

Итак, медиана в статистике – это уровень показателя, который делит набор данных на две равные половины. Значения в одной половине меньше, а в другой больше медианы. В качестве примера обратимся к набору нормально распределенных случайных чисел.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение.

Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше. Но если в процессе присутствует важный и неконтролируемый фактор, то могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

Медиана выборки – это альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам).

Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объектов около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.).

Формула медианы

Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.

Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

Me – номер значения, соответствующего медиане,

N – количество значений в совокупности данных.

Тогда медиана обозначается, как

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.

Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.

Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.

Обратимся к наглядной схеме.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

где xMe — нижняя граница медианного интервала;

iMe — ширина медианного интервала;

∑f/2 — количество всех значений, деленное на 2 (два);

S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;

fMe — число наблюдений в медианном интервале.

Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.

Для примера рассчитаем медиану по следующим данным.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.

медианный представитель в статистике что такое. Смотреть фото медианный представитель в статистике что такое. Смотреть картинку медианный представитель в статистике что такое. Картинка про медианный представитель в статистике что такое. Фото медианный представитель в статистике что такое

То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.

Расчет медианы в Excel

Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.

Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:

Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.

Ниже видеоролик о том, как рассчитать медиану в Excel.

Источник

Медиана (статистика)

Из Википедии — свободной энциклопедии

Медиа́на (от лат. mediāna «середина») набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше. Другое равносильное определение [1] : медиана набора чисел — это число, сумма расстояний (или, если более строго, модулей) от которого до всех чисел из набора минимальна. Это определение естественным образом обобщается на многомерные наборы данных и называется 1-медианой.

Например, медианой набора <11, 9, 3, 5, 5>является число 5, так как оно стоит в середине этого набора после его упорядочивания: <3, 5, 5, 9, 11>. Если в выборке чётное число элементов, медиана может быть не определена однозначно: тогда для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора <1, 3, 5, 7>принимают равной 4), подробнее см. ниже. В математической статистике медиана может использоваться как одна из характеристик выборки или совокупности чисел.

Также определяется медиана случайной величины: в этом случае оно определяется как число, которое делит пополам распределение. Грубо говоря, медианой случайной величины является такое число, что вероятность получить значение случайной величины справа от него равна вероятности получить значение слева от него (и они обе равны 1/2), — более точное определение дано ниже.

Можно также сказать, что медиана является 50-м персентилем, 0,5-квантилем или вторым квартилем выборки или распределения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *