мса авиация что такое
Международная стандартная атмосфера
Полезное
Смотреть что такое «Международная стандартная атмосфера» в других словарях:
МЕЖДУНАРОДНАЯ СТАНДАРТНАЯ АТМОСФЕРА — (МСА) гипотетическое вертикальное распределение температуры, давления и плотности воздуха в атмосфере Земли, которое по международному соглашению представляет среднегодовое и среднеширотное состояние. Основой для расчета параметров МСА служат… … Большой Энциклопедический словарь
МЕЖДУНАРОДНАЯ СТАНДАРТНАЯ АТМОСФЕРА — (МСА), гипотетическое вертикальное распределение температуры, давления и плотности воздуха в атмосфере Земли, которое по международному соглашению представляет среднегодовое и среднеширотное состояние. Основой для расчета параметров МСА служат… … Энциклопедический словарь
МЕЖДУНАРОДНАЯ СТАНДАРТНАЯ АТМОСФЕРА — принятая по международному соглашению модель атмосферы, в которой распределение по высоте температуры, давления и плотности воздуха характеризует среднее годовое (нормальное) состояние атмосферы (одинаковое для всех широт). За исходные величины… … Экологический словарь
международная стандартная атмосфера — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN international standard atmosphereISA … Справочник технического переводчика
международная стандартная атмосфера — (МСА) гипотетическое вертикальное распределение температуры, давления и плотности воздуха в атмосфере Земли, которое по международному соглашению представляет среднегодовое и среднеширотное состояние. Составление первых МСА относятся к 20… … Энциклопедия «Авиация»
международная стандартная атмосфера — (МСА) гипотетическое вертикальное распределение температуры, давления и плотности воздуха в атмосфере Земли, которое по международному соглашению представляет среднегодовое и среднеширотное состояние. Составление первых МСА относятся к 20… … Энциклопедия «Авиация»
Стандартная атмосфера — Международная стандартная атмосфера (сокр. МСА, англ. ISA) условное вертикальное распределение температуры, давления и плотности воздуха в атмосфере Земли. Основой для расчёта параметров МСА служит барометрическая формула, с определёнными в… … Википедия
Стандартная атмосфера — см. в статье Международная стандартная атмосфера. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники
стандартная атмосфера — стандартная атмосфера см. в статье Международная стандартная атмосфера … Энциклопедия «Авиация»
стандартная атмосфера — стандартная атмосфера см. в статье Международная стандартная атмосфера … Энциклопедия «Авиация»
Международная стандартная атмосфера
1. Международная стандартная атмосфера (ISA)
Атмосфера — газовая оболочка, окружающая Землю. Ее характеристики в масштабах всего мира различны. В силу этого стало необходимым принять усредненный набор условий, называемый Международной стандартной атмосферой (ISA).
Нижеследующая схема (Рисунок А1) иллюстрирует вариации
Рисунок A1: Температура ISA
Основу международной системы отсчета составляет температура 15°C на уровне моря при давлении 1013,25 гПа1. Стандартная плотность воздуха на уровне моря составляет 1,225 кг/м3.
Таким образом, воздух, считающийся идеальным газом, в модели ISA обладает следующими характеристиками:
• Выше MSL и ниже тропопаузы (36.089 футов):
Для быстрого определения стандартной температуры на данной абсолютной высоте может использоваться следующая приближенная формула:
Данная модель ISA используется как эталон при сравнении реальных атмосферных условий и соответствующих характеристик двигателя/воздушного судна. Следовательно, атмосферные условия будут выражаться как ISA +/- AISA на данном эшелоне полета.
Рассмотрим полет, происходящий в следующих условиях:
МЕЖДУНАРОДНАЯ СТАНДАРТНАЯ АТМОСФЕРА
Изменение основных параметров воздуха (давления, температуры и плотности) влияет на величину сил, возникающих при движении самолета в воздушном потоке. Поэтому при полетах в разных метеорологических и климатических условиях изменяются летные и аэродинамические характеристики самолетов.
Чтобы охарактеризовать летные и аэродинамические данные самолетов при одинаковых параметрах воздуха, всеми странами принята единая Международная стандартная атмосфера (МСА). Таблица МСА составлена на основании среднегодовых условий средних широт (широта около 45°) на уровне моря при влажности нуль процентов и следующих параметрах воздуха:
барометрическое давление В =760 мм рт. ст. (Ро= 10330 кгс/м 2 );
температура t=+15°C (То=288 К);
массовая плотность rо=0,125 кгс см 4 ;
Согласно МСА температура воздуха в тропосфере падает на 6,5°С на каждые 1000 м. В данном учебнике приводится часть таблицы МСА до высоты 5 км.
Международная стандартная атмосфера используется при градуировании пилотажно-навигационных и других приборов, при инженерных и конструкторских расчетах.
ФИЗИЧЕСКИЕ СВОЙСТВА ВОЗДУХА
На характер обтекания самолета воздушным потоком и на величину сил, возникающих при взаимодействии частей самолета и воздушного потока, существенное влияние оказывают физические свойства воздуха: инертность, вязкость, сжимаемость.
При движении самолета в воздушном потоке возникает сопротивление трения, которое определяет вязкость воздуха. Вязкость воздуха также определяет динамический коэффициент вязкости Чем больше температура воздуха, тем больше коэффициент вязкости, обусловленный увеличением хаотического движения молекул и ростом эффективности воздействия одного слоя воздуха на другой.
Самолеты Як-52 и Як-55 летают на скоростях менее 450 км/ч, при которых существенного изменения давления при обтекании самолета воздушным потоком не происходит и сжимаемость воздуха на аэродинамические характеристики и летные данные самолетов влияния практически не оказывает.
СЖИМАЕМОСТЬ ВОЗДУХА И СКОРОСТЬ ЗВУКА
Помимо стационарных движений газовых потоков в аэродинамике изучаются и некоторые нестационарные процессы, например образование и распространение звуковых волн.
Способность воздуха сжиматься объясняется большими расстояниями между молекулами. Так как у любого газа (а следовательно, и воздуха) межмолекулярные силы сцепления малы, то газ, всегда стремясь расшириться, занимает весь предоставленный ему объем.
Таким образом, воздух при изменении объема или сжимается или расширяется. При этом соответственно изменяется и его плотность: при увеличении объема она уменьшается, а при уменьшении увеличивается. Количественно сжимаемость оценивается отношением изменения плотности Dr к изменению давления DР, т. е. их относительной величиной. .Это отношение будет являться мерой сжимаемости. Чем больше отношение
тем больше сжимаем этот газ (или воздух).
Со сжимаемостью связана скорость распространения в воздухе звуковых волн.
СКАЧКИ УПЛОТНЕНИЯ
Рассмотрим картину распространения звуковых волн (малых возмущений) при движении источника возмущений (источника звука).
Рис. 4 Распространение волн слабых возмущений иг источников возмущений, движущихся с различными скоростями
Если источник возмущений неподвижен, то волны будут распространяться с одинаковой скоростью во все стороны в виде концентрических сфер, в центре которых находится источник возмущения. Каждое возмущение (звуковая волна) представляет собой местное уплотнение молекул воздуха, которое передается от одного слоя молекул к другому, удаляясь от источника возмущения (Рис. 4, а).
При движении точечного источника возмущения со скоростью, меньшей скорости звука, звуковые волны идут как вперед, так и назад (Рис. 4, б). В результате сферические волны будут смещены в сторону, обратную движению источника возмущений, однако источник останется внутри сфер.
Если скорость движения точечного источника возмущений сравняется со скоростью звука, то возмущения, вызванные источником, не успевают уйти от источника и в месте нахождения источника возмущений в каждый данный момент происходит наложение возмущений друг на друга. Образовавшаяся в результате этих наложений фронтальная поверхность разделяет пространство на две области: возмущенную (сзади источника) и невозмущенную (перед источником), как показано на Рис. 4, в.
Дата добавления: 2019-02-12 ; просмотров: 670 ; Мы поможем в написании вашей работы!
Мса авиация что такое
Страницы
вторник, 19 декабря 2017 г.
QNH, QFE, QNE. Установка давления на высотомере.
Барометрический метод измерения высоты, несмотря на свою примитивность, по сей день является основным в авиации. Барометрические высотомеры на самом деле измеряют не высоту, а атмосферное давление. Зная, как изменяется давление с высотой, легко определить высоту. Изменение высоты на единицу давления называется барической ступенью, которая и закладывается в механизм высотомера. Для корректной работы высотомера на специальной шкале необходимо установить исходное давление, то есть давление, которое будет соответствовать нулю высоты. Существуют три общепринятых варианта установки давления, которые обозначаются как QNH, QFE и QNE.
Конечно, в зависимости от условий, реальная барическая ступень будет меняться, но поскольку самолеты преодолевают огромные расстояния за сравнительно небольшое время, нет никакого смысла определять высоту исходя из условий в данной точке. В авиации применяется так называемая международная стандартная атмосфера (ISA). МСА — это модель, в которую заложена в числе прочего барическая ступень и давление на уровне моря. В условиях стандартной атмосферы 1 мм ртутного столба соответствует 11 метрам высоты, а 1 hPA (Гегтопаскаль) 9 метрам. Стандартное давление на уровне моря составляет 760 мм ртутного столба или 1013,25 Гектопаскалей. В некоторых странах, например в США, используют дюймы ртутного столба, и стандартное давление составляет 29.92 дюйма ртутного столба.
Чтобы высотомер мог измерить высоту, ему необходимо задать начало отсчета, т.е. установить давление, которое будет соответствовать нулю высоты. Сразу возникает вопрос, что принять за ноль. Можно принять высоту аэродрома, можно уровень моря, но ни то ни другое не подойдет для длительных перелетов на большие расстояния. Поскольку атмосферное давление — величина переменная, крайне важно чтобы на высотомере было установлено актуальное давление, в противном случае реальная высота может значительно отличаться от индицируемой на приборе, что прямо угрожает безопасности полета.
Сегодня в авиации применяются три системы отсчета барометрической высоты: QNH, QFE, QNE. Стоит оговориться, что это не аббревиатуры, а оставшиеся со времен широкого применения азбуки Морзе радиотелефонные коды.
QNH, QFE, QNE. Уровни начала отсчета высоты.
QNH – это давление на уровне моря в точке измерения, еще его называют давлением приведенным к уровню моря. Если вы установите давление QNH на высотомере, то получите свое превышение относительно уровня моря. После посадки, высотомер, на котором установлено QNH аэродрома, должен показать превышение аэродрома.
QFE – давление, измеренное на уровне аэродрома. Установив давление аэродрома и находясь на этом аэродроме, на высотомере увидим ноль.
QNE – стандартное давление, его значение закреплено документально, и оно постоянно. Как уже говорилось ранее, в зависимости от применяемых единиц измерения, стандартное давление может принимать следующий вид: 760 mmHg; 1013,25 hPA или 29,92 inHg. Кстати, поскольку давление величина переменная, выдерживая постоянное давление самолет фактически не находится в горизонтальном полете. Установив стандартное давление на высотомере, получаем высоту от условного уровня, который может находиться как над уровнем моря, так и под ним (в зависимости от атмосферных условий).
Изменение давления по маршруту полета и
изменение абсолютной высоты при выдерживании постоянной высоты
по стандартному давлению.
Последовательность установки давления.
Если говорить о «большой» авиации, которая летает высоко и далеко, последовательность установки давления выглядит следующим образом.
В зависимости от правил применяемых в конкретной стране и авиакомпании, при подготовке к вылету на высотомере устанавливают текущее значение QNH или QFE аэродрома вылета. Далее в наборе высоты на так называемой высоте перехода, как следует из названия, осуществляется «переход» на стандартное давление (QNE). Высота перехода может быть как своя на каждом аэродроме (как правило, 1000-2000 метров), так и единая на территории государства. Полет по маршруту выше высоты перехода выполняется по давлению QNE, т.е. по стандартному. В снижении, пересекая эшелон перехода, экипаж устанавливает QNH или QFE измеренные на аэродроме посадки. Эшелон перехода, аналогично высоте перехода, может быть как свой для конкретного аэродрома, так и единый для целого государства, например в США на всей территории установлены высота и эшелон перехода 18000 футов.
Крайне важно чтобы на высоте перехода экипаж установил стандартное давление. Вертикальное эшелонирование воздушных судов осуществляется по данным о высоте автоматически передаваемым с борта на землю, именно поэтому необходимо, чтобы на всех воздушных судах высота измерялась от одного и того же уровня. Сегодня во всем мире при полете выше высоты перехода применяется давление QNE, то есть стандартное давление.
Что касается «малой» авиации, которая летает на небольших высотах, выполнение полета по QNH района полета является единственным безопасным методом выдерживания высот. При этом экипаж должен постоянно получать у диспетчера и устанавливать актуальное давление района, над которым проходит полет.
QFE или QNH.
В СССР и России исторически применяется QFE. Однако, с массовой заменой отечественных самолетов на зарубежные обозначилась четкая тенденция перехода на применение QNH.
Немало копий сломано в спорах, что же лучше QFE или QNH, кстати, этот вопрос один из основных в вечном споре двух авиационных школ: западной и советской. Если исключить идеологический подтекст и взглянуть правде в глаза, выполнение полетов по QNH действительно безопаснее.
У QNH есть единственный обоснованный недостаток: при полете в районе аэродрома требуется постоянно держать в голове превышение этого аэродрома. Гораздо логичнее было бы при посадке увидеть на высотомере ноль, что собственно и дает применение QFE.
Стоит напомнить, что высоты препятствий на картах в первую очередь публикуются относительно уровня моря, а значит и высоту лучше измерять относительно уровня моря. Кроме того, при ошибочном переводе давления со стандартного на QNH (или непереходе на QNH), величина вероятной ошибки значительно меньше, чем при переходе со стандартного давления на QFE. Ошибки установки давления QFE на горных аэродромах крайне опасны: если, допустим, превышение аэродрома 1000 метров, и экипаж забыл переставить давление на эшелоне перехода, то при стандартных условиях в процессе захода на посадку экипаж будет фактически занимать высоты на 1000 метров ниже опубликованных. Кстати, при больших превышениях аэродрома шкалы давления на высотомере может просто не хватить для установки низкого давления, при полетах на такие аэродромы применялись специальные методики, что еще больше усложняло работу экипажа.
Сегодня в России по-прежнему широко применяется давление QFE, но допускается и использование QNH. К слову, вся авионика иностранного производства рассчитана на использование QNH, а применение QFE в ряде случаев может привести к некорректной работе бортового оборудования, например системы EGPWS, если источником информации о высоте является баровысотомер.
Мса авиация что такое
Единая для всех государств международная стандартная атмосфера ( МСА ) – условная атмосфера, в которой распределение давления по высоте в поле силы тяжести получается при определенных предположениях о распределении температуры по вертикали из барометрической формулы:
pH – давление на высоте;
p0 – давление на уровне Мирового океана;
M – молярная масса газа;
g – ускорение свободного падения;
R – универсальная газовая постоянная;
T – температура;
h – постоянная Больцмана (по имени австр. физика Л.Больцмана ).
В МСА за начало отсчета высоты принят уровень Мирового океана при следующих нормальных условиях: ускорение свободного падения g0=9,807 м/с 2 ; давление p0=101325 Па (760 мм рт.ст.); плотность =1,2257 кг/м 3 ; температура T0=288 К (t0=15
C); скорость звука a0=340 м/с.
Параметры МСА (изменение температуры и давления воздуха) для малых высот, на которых летают вертолеты и самолеты, приведены на рисунке.
Здесь же приведены данные о распределении среднегодовых значений температуры t(H)max и t(H)min.
В первом приближении для тропосферы (H=011 км) можно считать
где
tH – температура воздуха на высоте H, C;
aH – скорость звука на высоте H, м/с;
a0 – скорость звука на уровне Мирового океана, м/с;
— плотность воздуха на высоте H, кг/м 3 ;
– плотность воздуха на уровне Мирового океана, кг/м 3 ;
H – расчетная высота, км.
В стратосфере (до высоты 20 км) в первом приближении
где
– плотность воздуха на высоте 11 км, кг/м 3 ;
– плотность воздуха на расчетной высоте H, кг/м 3 ;
H – расчетная высота, км.
- мсhс ср конц hb в эр что это такое
- мса что это такое в телефоне