Вода более плотная среда чем воздух
Преломление света. Закон преломления света
Содержание
Из прошлых уроков вы уже знаете, что в однородной среде свет распространяется прямолинейно. Но в жизни много ситуаций, когда свет проходит через разные вещества до того, как достигнет наших глаз.
Например, через оконные стекла мы отлично видим все, что происходит на улице. А через стекла в межкомнатных дверях мы можем видеть только размытые силуэты того, что находится за дверью. Тот же самый пример можно привести и с прозрачной и мутной водой.
Значит, получаемое нашими глазами изображение как-то связано с тем, через какие среды проходит свет. Двигаясь прямолинейно в одной среде, он переходит в другую и снова двигается прямолинейно. Что же происходит при этом переходе из одной среды в другую?
Так, вам предстоит узнать новое понятие – преломление света. В ходе данного урока вы узнаете закономерности этого явления, рассмотрите различные опыты и научитесь применять полученные знания для решения задач.
Явление преломления света
Рассмотрим простой опыт. Для него нам понадобится прозрачный стакан с водой и обычный карандаш (рисунок 1).
Сначала опустим карандаш в воду вертикально (рисунок 1, а). Части карандаша в воздухе и в воде не изменились.
А теперь поменяем угол наклона карандаша (рисунок 2, б). Мы увидим интересную картинку. Нам кажется, что карандаш переломился на границе воды и воздуха.
Что произошло? Мы видим карандаш, потому что на него падает свет от какого-то источника. Его лучи отражаются от карандаша и попадают нам в глаза. Когда мы опустили карандаш в воду под каким-то углом, световые лучи дошли до наших глаз не только через воздух, но еще и через воду в стакане. При этом они поменяли направление своего распространения при переходе из одной среды в другую. В таком случае говорят, что свет преломился.
Преломление света – это явление изменения направления распространения света при переходе из одной среды в другую.
Но, если свет преломляется при переходе из одной среды в другую, почему на рисунке 1 (а) мы все равно видим карандаш без изменений? Чтобы разобраться с этим вопросом, нам необходимо более подробно изучить природу преломления света.
Скорость света и оптическая плотность среды
Свет распространяется в пространстве с определенной скоростью. Эта скорость настолько велика, что нам кажется, будто свет появляется мгновенно. Например, когда в темной комнате мы щелкаем переключателем, и включается свет.
Ученые не только рассчитали значение этой скорости, но и доказали, что скорость света различается в разных средах (таблица 1).
Значения скорости света в вакууме и воздухе практически не отличаются, поэтому используют одно значение – $300 000 \frac<км><с>$. Эта величина обозначается буквой $c$.
В других же средах наблюдается значительная разница в значениях скорости. Например, в воде скорость света меньше, чем в воздухе. При этом говорят, что вода является оптически более плотной средой, чем воздух.
Оптическая плотность – это величина, которая характеризует различные среды в зависимости от значения скорости распространения света в них.
Если пучок света падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, то часть света отразится от этой поверхности, а другая часть проникнет во вторую среду. При этом луч света изменит свое направление – происходит преломление света.
Схема преломления светового луча. Угол преломления
Рассмотрим преломление света более подробно (рисунок 2).
Перечислим элементы, обозначенные на рисунке 2:
Угол преломления – это угол между перпендикуляром, опущенным к границе раздела двух сред в точке падения светового луча, и преломленным лучом.
Теперь на поверхность воды с помощью маленького фонарика направим пучок света. Сделаем это таким образом, чтобы пучок света падал под каким-то углом.
Мы увидим, как луч поменяет свое направление на границе воздуха и воды. При этом угол преломления заметно меньше угла падения ($\gamma_1 \alpha_2$).
Вода – более плотная оптическая среда, чем воздух. Из всего этого мы можем сделать следующие выводы:
Если в ходе опытов мы будем менять угол падения, то заметим, что угол преломления тоже будет изменяться. При этом вышеописанные нами закономерности будут исполняться.
Показатель преломления
Давайте выясним, как именно углы падения и преломления связаны друг с другом. Рассматривать будем луч света падающий из воздуха в воду.
При увеличении угла падения, будет увеличиваться угол преломления (рисунок 4). Но отношение между этими углами ($\frac<\alpha><\gamma>$) не будет постоянным.
Постоянным будет оставаться другое отношение этих углов – отношение их синусов:
$\frac<\sin 30 \degree> <\sin 23 \degree>= \frac<\sin 45 \degree> <\sin 33 \degree>= \frac<\sin 60 \degree> <\sin 42 \degree>\approx 1.33$.
Полученное число (1.3) называют относительным показателем преломления. Обозначают эту величину буквой $n_<21>$.
Так, для любой пары веществ с разными оптическими плотностями можно записать:
Чем больше относительный показатель преломления, тем сильнее преломляется световой луч при переходе из одной среды в другую.
В чем физический смысл этой величины? Ранее мы говорили, что оптическая плотность характеризует вещество по скорости распространения света в нем. Показатель преломления делает то же самое.
Относительный показатель преломления – это величина, показывающая, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:
$n_ <21>= \frac<\upsilon_1><\upsilon_2>$.
Если луч света падает из вакуума или воздуха в какое-то вещество, то используется еще одна величина – абсолютный показатель преломления.
Вещество | $n$ |
Воздух | 1.00 |
Лед | 1.31 |
Вода | 1.33 |
Спирт | 1.36 |
Стекло (обычное) | 1.50 |
Стекло (оптическое) | 1.47 – 2.04 |
Рубин | 1.76 |
Алмаз | 2.42 |
Таблица 2. Абсолютные показатели преломления света различных веществ
Здесь мы вернемся к вопросу о том, почему на рисунке 1 (а) мы не видим преломления.
Если падающий луч падает перпендикулярно на границу раздела двух сред, то он не испытывает преломления.
Закон преломления света
Итак, преломление света происходит по определенному закону.
Закон преломления света:
падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. При этом отношение синуса угла падения к синусу угла преломления – постоянная величина для двух сред:
$\frac<\sin \alpha> <\sin \gamma>= \frac= n_<21>$.
Мнимое изображение, образованное преломлением света. Призмы
Преломление света, как и отражение света плоским зеркалом, создает “кажущееся” изменение положение источника света. Мы наблюдали такое изменение в самом первом опыте этого урока на рисунке 1, б.
Но, дело в том, что мнимое положение источника света в случае преломления будет различным для лучей, падающих на границу раздела двух сред под разными углами. Поэтому мнимое положение источника света при преломлении обычно подробно не рассматривают.
Тем не менее, мы часто замечаем эти изменения. Например, в прозрачной воде в закрытых водоемах или в море кажется, что предметы, лежащие на дне и находящиеся в толще воды, находятся на другом расстоянии от нас, чем они есть на самом деле.
Рассмотрим наглядный опыт с монеткой (рисунок 5).
Возьмем неглубокую широкую чашку и положим на ее дно монетку. Выберем такое положение для наблюдения, чтобы она была не видна (рисунок 5, а).
Оставаясь в этой же точке наблюдения, нальем в чашку воду. Теперь монета стала видна (рисунок 5, б). То есть, мы видим не саму монету, а ее мнимое изображение, образованное преломлением света.
В различных оптических приборах используют эти особенности преломления. Часто свет проходит сквозь тело, имеющее форму призмы (рисунок 6, а).
Световой луч, падающий на боковую грань призмы дважды преломляется (рисунок 6, б): при входе в призму и при выходе из нее. Такой луч на выходе из призмы будет отклоняться к основанию треугольника.
В оптических приборах используют не просто призмы, но и их различные сочетания. Например, на рисунке 7 изображены 3 коробки, в которых находятся треугольные призмы.
Вы можете оценить, как при разных положениях призм изменяется ход лучей на выходе из коробки. При этом падающие лучи во всех трех случаях (а, б, в) были параллельны и имели одинаковое направление.
Примеры задач
Дано:
$\alpha = 30 \degree$
$\gamma = 45 \degree$
$n_2 = 1$
$c = 3 \cdot 10^8 \frac<м><с>$
Посмотреть решение и ответ
Решение:
По определению абсолютного показателя преломления для скипидара мы можем записать:
$n_1 = \frac
При решении задачи мы будем использовать рисунок 9.
Теперь запишем условие задачи и решим ее.
Дано:
$n_1 = 1$
$n_2 = 1.73$
$\beta = 60 \degree$
Посмотреть решение и ответ
Решение:
По закону отражения света:
$\alpha = \beta = 60 \degree$.
Условие задачи дает понять, что в глаз наблюдателя попадает луч, который падает перпендикулярно границе раздела двух сред. В таком случае, преломление наблюдаться не будет. Тем не менее, как и в настоящей жизни, мы все равно увидим преломленное изображение источника света. Он будет казаться ближе. В ходе решения этой задачи вы узнаете, почему так происходит.
Для начала рассмотрим рисунок 10.
Теперь мы можем записать условие задачи и решить ее.
Дано:
$H = 3 \space м$
$n_1 = 1.33$
$n_2 = 1$
Посмотреть решение и ответ
Решение:
$h = \frac<3 \space м> <1.33>\approx 2.3 \space м$.
Преломление света. Закон преломления света
Урок 41. Физика 8 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Преломление света. Закон преломления света»
На прошлых уроках мы говорили о том, что в однородной среде свет распространяется прямолинейно. Если пучок света падает на границу раздела двух прозрачных сред, то часть его отражается и возвращается в первоначальную среду. Это явление называется отражением света.
Однако, свет, падая на границу раздела двух сред, не только отражается от неё, но и частично проходит во вторую среду и распространяется в ней. И сегодня мы с вами рассмотрим это явление более подробно.
Для начала проведём такой опыт. Возьмём стакан с водой, опустим в него карандаш так, чтобы он был расположен вертикально. Изменив угол наклона увидим, что на границе воды и воздуха карандаш кажется переломленным.
Это объясняется тем, что световой пучок при переходе из одной среды в другую изменяет направление распространения.
Изменение направления распространения света при переходе из одной среды в другую называют преломлением света.
Преломление света вы можете наблюдать, когда опускаете ложку в стакан с чаем, входите в воду в реке или в море.
А каким законам подчиняется преломление света? Чтобы ответить на этот вопрос, проведём такой опыт. В центре оптического диска закрепим тонкую стеклянную пластинку и направим на неё узкий пучок света.
Часть света отразиться от пластинки, а часть света проникает через пластинку. Этот луч света называется преломлённым лучом.
Угол между перпендикуляром, восставленным к границе раздела двух сред в точке падения луча, и преломлённым лучом называется углом преломления.
Сравнив углы падения и преломления, мы видим, что угол преломления меньше угла падения.
Увеличим угол падения — угол преломления тоже увеличивается, но по-прежнему он меньше угла падения.
Если стекло заменить, например, водой и пустить световой луч под тем же углом, что и на стеклянную пластинку, то угол преломления в воде будет несколько больше, чем в стекле, но всё равно меньше угла падения.
Различие углов падения и преломления обусловлено тем, что стекло, вода и воздух имеют разную оптическую плотность.
Не путайте оптическую плотность с плотностью вещества. Есть вещества, у которых плотность меньше, чем плотность воды, например, скипидар. В то же время скипидар оптически более плотный, чем вода. Дело в том, что оптическая плотность среды характеризуется скоростью распространения света в ней. Чем больше скорость распространения света в среде, тем меньше её оптическая плотность.
Следовательно, оптическая плотность стекла больше, чем оптическая плотность воздуха, так как скорость распространения света в нём меньше.
Рассмотрим ещё один пример. Стеклянный сосуд, на дне которого находится плоское зеркало, заполним водой, подкрашенной флюоресцирующей жидкостью.
На поверхность воды под некоторым углом к ней направим пучок света. Он изменяет своё направление, поскольку вода — среда оптически более плотная, чем воздух.
Из опыта видно, что при переходе света из воздуха в воду угол падения больше угла преломления, а при переходе из воды в воздух угол падения меньше угла преломления.
На основании проделанных опытов мы можем сделать следующие выводы. Во-первых, если луч света переходит из среды оптически менее плотной в среду оптически более плотную, то угол преломления меньше угла падения. То есть преломлённый луч как бы прижимается к перпендикуляру
Если свет переходит из среды оптически более плотной в среду оптически менее плотную, то угол преломления больше угла падения. То есть преломлённый луч прижимается к границе раздела двух сред. Этот вывод логически следует из свойства обратимости, которое характерно не только для падающего и отражённого лучей, но и для падающего и преломлённого лучей.
И вновь обратимся к опыту. В центре оптического диска закрепим сосуд с водой и направим на него узкий пучок света. Будем менять угол падения света и следить за изменением угла преломления.
При изменении угла падения, угол преломления тоже меняется и соотношение между углами не сохраняется. Однако, если составить отношение синусов углов падения и преломления, то мы увидим, что оно остаётся постоянным:
Таким образом, для любой пары веществ можно записать, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред:
Эту величину называют относительным показателем преломления для двух сред. Чем он больше, тем сильнее преломляется свет на границе раздела двух сред.
Мы уже говорили, что преломляющая способность вещества зависит от его оптической плотности, которая, в свою очередь, зависит от скорости распространения света в веществе. Таким образом, относительный показатель преломления показывает, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:
Если свет падает из вакуума в вещество, то вводится величина, называемая абсолютным показателем преломления. Он показывает, во сколько раз скорость света в вакууме больше чем в данной среде.
Теперь мы можем сформулировать закон преломления света: лучи, падающий и преломлённый, лежат в одной плоскости с перпендикуляром, проведённым в точке падения луча к границе раздела двух сред. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред:
Отметим и то, что когда луч падает перпендикулярно на границу раздела двух сред, он не испытывает преломления, что можно подтвердить опытом:
Разумеется, что не будет преломления и на границе, разделяющей две среды с одинаковой оптической плотностью, т. е. на границе раздела сред, в которых скорость света одинакова.
Пример решения задач.
Задача. На дне водоёма глубиной 3 м находится источник света. На какой глубине увидит источник света наблюдатель, если он смотрит с лодки вертикально вниз, а показатель преломления воды равен 1,33?
Водная и наземная среда
Водная и наземная среда
Жизнь зародилась в океане. В мелких прибрежных водах условия для возникновения первых групп растении и животных и для развития их разнообразия были благоприятные: относительное постоянство температуры и солености, обилие солнечного света, растворенных газов п минеральных веществ. Благодаря своей выталкивающей силе вода одинаково леи ко поддерживает как топкие структуры, так и массивные организмы.
Первые шаги в завоевании суши были трудными, о чем свидетельствуют несколько сот миллионов лет, отделяющие время, когда жизнь стала процветать в море, от ее первого появления на суше. II вес же, несмотря на суровость наземной среды, жизнь па суше достигла высокого уровня как по общей массе органического вещества, так же по разнообразию.
Быть может, нам не следовала бы выделять в качестве двух главных категории водную и наземную среды, ведь океан имеет твердое дно, а наземная среда погружена в воздушный океан. Чтобы в полной мере оценить различие между водной и наземной средами, надо сопоставлять свойства воды п воздуха, а не воды и суши.
К числу свойств воды, которые почти всецело определяют форму и функции водных организмов, относятся такие ее свойства, как плотность (примерно в 800 раз превышающая плотность воздуха) и способность растворять газы и минеральные вещества. Вода предоставляет все, что нужно для жизни: большинство морских организмов независимы от находящегося под ними дна, за исключением тех, кто использует его (па мелководьях) в качестве субстрата для прикрепления или зарывания в пего. В отличие от этого наземная жизнь приурочена к верхнему слою суши и прилегающей к нему атмосфере, причем обе эти среды поставляют существенные компоненты, необходимые живым организмам. Воздух содержит кислород, необходимый для дыхания, и двуокись углерода, необходимую для фотосинтеза, а почва служит источником воды л минеральных веществ.
Плотность и вязкость воды и воздуха
Водная среда поддерживает находящиеся в ней организмы, однако в большинстве случаев плотность живых тканей выше, чем плотность соленой или пресной воды. У водных животных и растений в процессе эволюции выработалось множество разнообразных структур, препятствующих погружению или замедляющих его. У рыб имеются плавательные пузыри — небольшие, наполненные газом мешки, находящиеся в полости тела и приближающие его удельный вес к удельному весу воды. У многих крупных бурых водорослей, растущих обычно в мелких прибрежных водах, имеются воздушные пузыри, выполняющие аналогичную функцию. Благодаря таким пузырям листовидный таллом этих водорослей, прикрепленных к субстрату прочными ризоидами, поднимается со дна к поверхностным водам, освещенным солнцем и богаты\ кислородом. Микроскопические одноклеточные водоросли (фитопланктон) в огромных количествах плавают в поверхностных водах озер п океанов. Эти растительные клетки содержат мельчайшие капельки масел, плотность которых ниже плотности воды и которые, таким образом, уравновешивают естественную тенденцию клеток опускаться вниз. Мельчайшие морские животные нередко снабжены длинными нитевидными придатками, замедляющими их погружение в глубину, подобно тому как парашют замедляет падение тела в воздухе (рис. 3.1). Аналогичные функции несут шелковинки паука и специальные придатки семян, как, например, крылатки клена, хохолки у семян одуванчика и ваточника; у наземного растения эти придатки увеличивают также радиус распространения семян.
Быстро передвигающиеся водные организмы должны иметь обтекаемую форму, что позволяет им уменьшить сопротивление, испытываемое при перемещении в такой вязкой среде, как вода. В этом смысле у скумбрии и других стайных рыб, живущих в открытом море, пропорция тела с точки зрения физики приближаются к идеальным (рис. 3.2) Воздух оказывает гораздо менее сильное сопротивление движению, поскольку его вязкость более чем в 50 раз ниже вязкости воды.
Вода обладает большей выталкивающей силой, чем воздух, а поэтому сила тяжести ограничивает максимальные размеры водных организмов в меньшей степени, чем наземных. Самые крупные наземные животные выглядят карликами по сравнению с некоторыми китами, достигающими в длину свыше 30 м и обладающими массой более 100 т (масса крупных слонов всего 7 т).
О том, что выталкивающая сила воды очень хорошо противодействует силе тяжести, свидетельствует скелет акуловых рыб, состоящий из костей, а из эластичного хряща, который не мог бы служить опорой для тела па суше. Несмотря на то что киты дышат воздухом, оказавшись на берегу, они быстро начинают задыхаться, так как их легкие сплющиваются под давлением огромной массы тела. Для наземных животных характерны жесткие структуры, благодаря которым они сохраняют форму и положение тела, несмотря на действие силы тяжести. Костный внутренний скелет позвоночных, хитиновый наружный скелет насекомых, жесткие целлюлозные стенки растительных клеток — все это структуры, несущие одну и ту же, опорную, функцию. У водных животных жесткие структуры служат обычно для защиты (раковина моллюсков) или для прикрепления мышц (панцирь ракообразных или костный скелет рыб), а не для поддержания веса тела.
Рис. 3.1. Нитевидные и перистые придатки планктонного ракообразного, обитающего в тропических морях (общая длина придатков составляет около 1,2 мм).
Рис. 3.2. Обтекаемая форма тела молодых особей скумбрии уменьшает сопротивление воды и дает возможность рыбе быстро плавать с минимальной затратой энергии.
Солнце одинаково интенсивно освещает и поверхность океана, и поверхность суши. Но на суше большая часть солнечного света поглощается или отражается листьями растений. В сущности, в наземных местообитаниях света иногда не хватает и растения конкурируют между собой за пего. Не для того ли деревья поднимают свои листья так высоко над землей, чтобы они оказались выше листьев соседних растений п получали больше света? Там, где вследствие недостатка воды растения не могут покрыть всю поверхность местообитания, падающий свет либо отражается, либо поглощается и превращается в тепло, нагревая поверхность земли.
Прозрачность стакана чистой воды обманчива. Способность воды к поглощению н рассеиванию света достаточно велика, п это сильно ограничивает глубину освещаемой Солнцем зоны океана. Поскольку для фотосинтеза необходим свет, глубина, па которой в океане можно встретить растения, также ограничена; они обитают только в относительно узкой зоне, куда проникает свет и где интенсивность фотосинтеза превосходит интенсивность дыхания растений. Это так называемая эвфоническая зона. Нижняя граница эвфонической зоны, где фотосинтез точно уравновешивает интенсивность дыхания, называется компенсационной точкой. Если водоросли, составляющие фитопланктон, погружаются на глубину ниже компенсационной точки или уносятся направленными вниз течениями воды и не возвращаются достаточно быстро ближе к поверхности в результате апвеллинга, то они погибают.
В некоторых озерах и морях, особенно тропических, где вода отличается исключительной прозрачностью, компенсационная точка может находиться на глубине 100 м от поверхности, но такие условия встречаются крайне редко. В продуктивных водоемах с высокой плотностью фитопланктона или же в мутных водоемах со взвешенными в воде частицами ила глубина эвфонической зоны может составлять всего один метр. В некоторых очень сильно загрязненных реках свет проникает практически лишь на глубину нескольких сантиметров.
Поскольку растениям необходим свет, крупные бентосные водоросли (формы, прикрепленные ко дну) встречаются только вблизи материков, где глубина воды не превышает 100 м. В огромных просторах открытого океана, а также в более мелких прибрежных зонах фитопланктон эвфонической зоны состоит из одноклеточных взвешенных в воде растений. Мелкие плавающие животные (зоопланктон), питающиеся фитопланктоном, также приурочены преимущественно к этой зоне, где их пища особенно обильна. Однако распространение животных не ограничено верхними слоями воды. Даже в самых глубоких частях океана, под толщей воды в несколько километров, обитают весьма разнообразные животные; пищей им служат мертвые организмы, падающие непрерывным дождем из освещаемых солнцем поверхностных слоев.
Кислород
Почти всем организмам, в том числе и зеленым растениям, для дыхания (процесс биохимического высвобождения энергии из органических соединений) необходим кислород. Атмосфера очень богата кислородом, который составляет примерно одну пятую ее по весу, однако в воде кислород растворяется плохо. Даже для наземных организмов, тело которых состоит в основном из воды, обеспечение кислородом и его распределение по разным тканям представляет собой очень серьезную проблему. Способы разрешения этой проблемы у разных организмов показывают, какое важное влияние оказывают физические свойства среды на форму и функции организмов (табл. 3.1).
У мелких водных организмов кислород поступает в ткани путем диффузии из окружающей их воды. У наземных растений газообмен с атмосферой также происходит за счет диффузии. Диффузия — физический процесс, при котором молекулы перемещаются из области высокой концентрации данного вещества в область низкой его концентрации до тех пор, пока их распределение не станет равномерным. Если концентрация кислорода в тканях данного организма ниже, чем в окружающей среде, то кислород диффундирует в ткани. Поскольку животные постоянно расходуют кислород в процессе дыхательного обмена, содержание кислорода в организме остается на низком уровне, что и обусловливает его непрерывную диффузию в ткани. Однако адекватное снабжение тканей кислородом путем диффузии возможно лишь на расстояниях не более 1 мм. У крупных организмов эта проблема решается при помощи циркуляторных систем, которые обеспечивают передвижение жидкостей от поверхностных участков — кожи, жабр или легких — к глубоким тканям
ТАБЛИЦА 3.1. Некоторые проблемы, с которыми сталкиваются крупные организмы в связи со снабжением своих тканей кислородом, и способы разрешения этих проблем
Проблема Решение Примеры
Не слишком серьезна у мелких или малоактивных организмов.
У крупных организмов диффузии препятствует большое расстояние от поверхности тела до его глубоких тканей.
Растворимость кислорода в воде ограничивает его перенос циркулирующими в организме жидкостями.
Высокое содержание белков повышает вязкость крови.
Снабжение кислородом происходит путем простой диффузии через клетки.
Циркуляторная система перекачивает жидкости из поверхностных тканей в глубокие.
Связывающие кислород белки (например, гемоглобин), содержащиеся в крови.
Дыхательные белки крови находятся в эритроцитах.
Простейшие, губки, кишечно-полостные.
Круглые черви — перекачивание при помощи мышц тела; членистоногие и моллюски — открытая система кровообращения без капилляров; позвоночные — замкнутая система кровообращения.
Гемоглобин широко распространен у позвоночных, но редко встречается в других группах, у которых имеются иные пигменты; у членистоногих пигментов крови нет, так как воздух непосредственно поступает в клетки по системе трахей.
Все позвоночные, некоторые моллюски и иглокожие.
Циркуляция жидкостей в организме сильно облегчает распределение в нем кислорода (и других веществ), однако вода не может содержать в себе достаточное количество растворенного кислорода, чтобы обеспечить интенсивный метаболизм. Растворимость кислорода в воде (до 1% по объему или около 0,0014% по весу) не дает возможности удовлетворить таким путем всей потребности активно функционирующих тканей. У многих групп животных в крови имеются специальные сложные белки, такие, как гемоглобин, увеличивающие кислородную емкость крови. Поскольку кислород легко соединяется с молекулами гемоглобина, содержание этого газа в плазме крови, ограничиваемое его способностью растворяться в воде, понижается. Гемоглобин может содержать в 50 раз больше кислорода, чем плазма крови. Но высокое содержание белка в крови создает дополнительную проблему, так как при этом повышается вязкость крови. У позвоночных и у некоторых морских беспозвоночных проблема слишком густой крови разрешается тем, что гемоглобин сосредоточен в эритроцитах, которые легко скользят один мимо другого в кровотоке.
Многие из этих приспособлений, связанных с обеспечением организма кислородом, возникали в ответ на различное его содержание в среде. Растворимость кислорода в воде снижается с повышением температуры или солености. В условиях, наиболее благоприятных для растворимости — при 0°С в пресной воде, — концентрация кислорода не достигает даже одной четвертой его концентрации в воздухе. В естественных водоемах концентрация растворенного кислорода никогда не достигает уровня, допускаемого их температурой и содержанием в них солей. Концентрация кислорода в воде редко превышает 6 см3/л, что примерно в 30 раз ниже его концентрации в воздухе. В стоячих водоемах, особенно в болотах или на дне островных озер, кислорода иногда нет вовсе, так как бактерии используют весь имеющийся его запас при разложении органических веществ. Среда, лишенная кислорода, называется анаэробной.
У рыб, живущих в стоячих водоемах, а также у птиц и млекопитающих, живущих на больших высотах, где плотность воздуха ниже, а поэтому кислорода меньше, чем в местообитаниях, расположенных на уровне моря, содержание гемоглобина в крови обычно выше, чем у животных, местообитания которых богаче кислородом. В таких условиях сама молекула гемоглобина становится приспособленной к низкому содержанию в среде кислорода и начинает связывать его более интенсивно, облегчая снабжение организма кислородом. У людей, живущих в местах, расположенных на уровне моря, кислородная емкость крови составляет 21% (по объему). В одном эксперименте у добровольцев, которые провели несколько недель на высоте 5350 м, способность крови связывать кислород повысилась до 25%, главным образом за счет увеличения количества гемоглобина, однако она далеко не достигла 30%, характерных для людей, постоянно живущих на больших высотах. Помимо изменений, происходящих в гемоглобине, на снабжение кислородом оказывают также влияние приспособительные изменения объема легких, частоты и глубины дыхания, размера сердца, частоты его сокращений и ударного объема и развития капиллярной сети..
Скорость, с которой организм может извлекать из воды растворенный в ней кислород, отчасти зависит от скорости, с которой он может пропускать воду через свои органы дыхания. Поэтому высокая вязкость воды по сравнению с воздухом еще более затрудняет водным животным добывание кислорода. Двустворчатые моллюски и многие рыбы создают непрерывный поток воды через жабры. Другие рыбы находятся в постоянном движении, чтобы обеспечить обмывание жабр водой. Наземные же животные могут быстро набирать воздух в легкие и вновь выпускать его наружу.
В атмосфере кислород распределен равномерно, однако его концентрация в воде подвержена сильным колебаниям, которые обусловлены его медленной диффузией. Содержание кислорода в воде обычно понижается с удалением от поверхности раздела между воздухом и водой; например, на дне пруда оно ниже, чем на его поверхности. Стоячие водоемы содержат меньше кислорода, чем проточные, в которых благодаря перекатам, водопадам и волнам происходит интенсивное перемешивание воды и воздуха. Некоторое количество кислорода посту- ет в воду за счет фотосинтеза. В большинстве случаев концентрация растворенного кислорода в водной среде увеличивается днем, когда происходит выделение кислорода в результате фотосинтеза. Это увеличение сводится па нет ночью, когда животные и растения в процессе дыхания поглощают кислород, а фотосинтеза не происходит. Двуокиси углерода в воде больше, и распределена она более равномерно, однако ее содержание также подвержено суточным колебаниям, но только в противоположном направлении: днем оно понижается, а ночью повышается.