Водород в чем используется
Применение водорода в промышленности
Современную промышленность невозможно представить без использования в разных ее отраслях и на разных этапах производства технических газов. И водород один из самых востребованных промышленностью газов, он занимает третье место после кислорода и азота.
Водород является одним из важнейших видов сырья нефтехимической и химической промышленности. Без этого газа не обходятся и другие отрасли: металлургическая, пищевая, стекольная, электронная, электротехническая.
Химическая промышленность
Основной областью применения водорода является производство химических продуктов — аммиака, метанола, хлористого водорода и его раствора — соляной кислоты. В дальнейшем аммиак используется для получения азотных удобрений, взрывчатых веществ, синтетических волокон, пластмассы, лекарств.
Нефтеперерабатывающая промышленность
На НПЗ водород используется при получении топлива из высокосернистого тяжелого сырья, в установках гидрообессеривания, для гидрокрекинга дистиллятов, гидроочистки, при производстве смазочных материалов, так же водород необходим в других процессах нефтепереработки.
Металлургия
В металлургии основная доля используемого водорода приходится на получение металлизированного сырья прямым восстановлением железа. С помощью водорода восстанавливают металлы из их оксидов, например, так получают вольфрам.
Большие объемы технического водорода применяются в прокатном производстве для термической обработки холоднокатаного проката. Используется водород металлургическими предприятиями для получения азотно-водородной защитной атмосферы при термической обработке трубного проката.
При горении водорода в кислороде температура поднимается примерно до 3000 °C, что позволяет сваривать тугоплавкие металлы.
Стекольная промышленность
В этой отрасли водород используется при производстве листового стекла флоат-методом и при получении кварцевого стекла, изготавливаемого плавлением кварца, горного хрусталя или синтетического диоксида кремния в кислородно-водородном пламени.
Энергетика
Благодаря таким свойствам, как высокие теплопроводность и коэффициент диффузии, водород используется для охлаждения мощных турбогенераторов на ТЭЦ и АЭС.
Пищевая промышленность
На предприятиях пищевой промышленности — масложировых комбинатах — водород применяется при производстве маргарина методом гидрогенизации жидких растительных жиров.
К другим потребителям водорода относятся горно-обогатительные комбинаты, электротехническая и электронная промышленность, заводы по изготовлению ядерного топлива, транспортные, газовые, фармацевтические предприятия.Сжиженный водород используется как ракетное горючее.
Сферы применения водорода
Современную промышленность сложно представить без применения технических газов на различных этапах производства. На сегодняшний день водород входит в тройку наиболее востребованных промышленностью газов, уступая лишь кислороду и азоту.
|
Структура производства промышленных газов в России, % |
Водород относится к числу важнейших видов сырья химической и нефтехимической промышленности. Свойства этого газа обуславливают его применение и в других отраслях промышленности: металлургической, пищевой, стекольной, электронной, электротехнической.
Структура потребления водорода в России в 2013 г.
Аммиак | 54,88% |
Нефтеперерабатывающие заводы | 22,35% |
Метанол | 13,30% |
Восстановление железа | 7,11% |
Капролактам | 0,74% |
Бутиловые спирты | 0,72% |
Прокат | 0,34% |
HCl | 0,25% |
Анилин | 0,09% |
Энергетика | 0,06% |
Гидрогенизация жиров | 0,02% |
Электроника | 0,02% |
Стекло и керамика | 0,02% |
Прочее | 0,02% |
Химическая промышленность
В России основная область потребления водорода – производство химических продуктов, прежде всего аммиака и метанола.
Потребление водорода при синтезе метанола CH 3 OH составило 0,6 млн.т. в 2013 г.
Потребление водорода в остальных сегментах химической промышленности не превышает 90 тыс.т. – 3% от объема потребления.
Нефтеперерабатывающая промышленность
Повышается потребность НПЗ в водороде, необходимом для получения топлив из тяжелого высокосернистого сырья. Огромное количество водорода требуется для установок гидрообессеривания, гидрокрекинга дистиллятов, гидроочистки, изомеризации, производств смазочных материалов. Кроме того, водород на НПЗ используется для активации катализаторов риформинга и регенерации катализаторов изомеризации.
Металлургия
Основной областью применения водорода в металлургии является производство металлизированного сырья методом прямого восстановления железа. Сейчас в этом процессе потребляется около 320 тыс.т. водорода.
Значительные объемы водорода расходуются в технологических процессах прокатного производства (при термической обработке холоднокатаного проката). Потребление водорода – около 15 тыс.т. в год.
Водород на металлургических предприятиях используется также для создания защитной азотно-водородной атмосферы при термообработке труб.
Стекольная промышленность
В стекольной промышленности водород применяется при производстве листового стекла float-методом, а также для получения кварцевого стекла, которое изготавливают плавлением чистого горного хрусталя, кварца или синтетического оксида кремния в водородно-кислородном пламени.
Энергетика
В энергетике водород используется для охлаждения мощных турбогенераторов, благодаря его высокой теплопроводности и коэффициенту диффузии, а также нетоксичности. По оценкам, в энергетике на ТЭЦ, АЭС потребляется около 4-5 тыс.т. водорода в год.
Пищевая промышленность
В пищевой промышленности водород используется в процессах гидрогенизации масел и жиров при получении твердых жиров (маргарина). Объем потребления водорода масложировыми комбинатами оценивается на уровне 1,5 тыс.т. в год.
Среди прочих потребителей водорода – обогатительные комбинаты, заводы, занимающиеся фабрикацией ядерного топлива, предприятия электронной и электротехнической промышленности, транспортные и газовые компании, фармацевтика.
Перспективы и недостатки водородной энергетики
Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.
В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.
В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.
По этим способам его разделяют на цветовые градации.
Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.
Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.
Розовый или красный — произведенный при помощи атомной энергии.
Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.
Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.
Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.
Себестоимость производства по видам водорода, доллар за килограмм
Водородная энергетика
На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.
В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.
Перспективы отрасли
Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.
В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.
Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.
В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:
В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.
Как сделать ремонт и не сойти с ума
Преимущества водородной энергетики
Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.
Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.
Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.
Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.
Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.
Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.
Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.
Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.
В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.
Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.
Недостатки водородной энергетики
Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.
Водород: эпоха возрождения?
Климатические амбиции крупнейших экономик мира на пути к низкоуглеродной энергетике заставили их снова обратиться в сторону самого легкого и самого распространенного элемента на земле — водорода. По мнению международных экспертов, водород, который имеет двухсотлетнюю историю использования, именно по причине экологической чистоты наконец имеет шансы на успех.
«Хотя за последние 50 лет водород пережил несколько волн интереса, ни одна из них не привела к устойчивому росту инвестиций и более широкому внедрению в энергетических системах. Тем не менее, недавний акцент на декарбонизацию и расширение масштабов и ускоренный рост низкоуглеродных технологий, таких как возобновляемые источники энергии, вызвал новую волну интереса к свойствам и расширению цепочки поставок водорода», — пишет в своем обзоре Goldman Sachs (GS).
Водород содержит в 2,5 раза больше энергии на единицу массы по сравнению с природным газом и бензином, но его очень низкий вес подразумевает гораздо более низкую плотность энергии на единицу объема в его газообразной форме в условиях окружающей среды.
«Водород обладает рядом ценных свойств, два из которых делают его уникальным в эпоху изменения климата:
— отмечают эксперты GS.
Зеленый, серый, бурый и голубой водород
В настоящее время производится около 70 млн тонн водорода, но лишь менее 2% производится экологически чистым способом — путем электролиза воды, когда вода разлагается на свои составляющие — водород и кислород — после подачи электрического тока. Если электроэнергия производится с использованием возобновляемых источников энергии (ВИЭ) — это «зеленый» водород, что является конечной целью экологически ответственных стран.
Однако, как водится, это наиболее дорогостоящий способ, и сейчас водород производится в основном из ископаемых источников энергии, в частности, из природного газа путем его риформинга — это «серый» водород (75%), поскольку нежелательным продуктом является СО2.
Остальной объем водорода производится путем газификации угля и называется «бурым» водородом.
По данным Международного энергетического агентства (МЭА), около 6% мирового производства газа и 2% угля используется для производства водорода, что приводит к существенным выбросам парниковых газов.
Аналитики Wood Mackenzie подсчитали, что в 2017 году на мировое производство водорода приходилось больше ежегодных выбросов CO2 и других парниковых газов, чем на всю Германию и мировую судоходную отрасль — 830 млн т в год.
На пути к «зеленому» водороду выделяется понятие «голубого» водорода: если при производстве «серого» или «бурого» будут улавливаться парниковые газы за счет систем CCS (carbon capture systems).
Где используется водород
С 1975 года спрос на водород увеличился более чем в три раза — с 18 до чуть более 70 млн т в год, из них около половины — 38 млн т — потребляется в нефтепереработке, около 32 млн т — в химической промышленности для производства аммиака, еще 4 млн т потребляют другие отрасли, в частности, при производстве метанола и стали, подсчитало МЭА.
Эксперты отмечают, что водород может «обезуглеродить» ряд секторов, где это представлялось сложным осуществить, включая перевозки на дальние расстояния, химическую промышленность, а также производство чугуна и стали.
Как пишет GS, ключевые характеристики водорода (малый вес и высокая энергия на единицу массы, короткое время дозаправки, нулевые прямые выбросы при использовании возобновляемых источников энергии) делают его привлекательным кандидатом в качестве транспортного топлива.
На сегодняшний день сжатый водород используется для автомобильного транспорта (включая легковые автомобили, а также автобусы, грузовики и поезда), при этом на легковые автомобили приходится подавляющее большинство используемых электромобилей на топливных элементах. Япония, США, ЕС и Южная Корея лидируют по уровню парка FCEV, но многие другие страны недавно также установили цели по внедрению водорода в транспортном секторе.
«Конкурентоспособность автомобилей на водородных топливных элементах зависит от стоимости топливных элементов и заправочных станций, в то время как для грузовых автомобилей приоритетной задачей является снижение стоимости доставки водорода»,
Количество FCEV в мире почти удвоилось до 25210 единиц в конце 2019 года, при этом было продано 12350 новых автомобилей — почти вдвое больше, чем в 2018 году. По состоянию на конец 2019 года во всем мире работало 470 водородных заправочных станций, что на 20% больше, чем в 2018 году.
Железнодорожная отрасль уже является лидером в европейском энергетическом переходе, генерируя только 0,1% общих выбросов парниковых газов, однако водородные поезда помогут дополнительно снизить выбросы и уровень шума. Первые коммерческие поезда были представлены в 2016 году компанией Alstom, а в 2018 году они введены в эксплуатацию в Германии. Хотя они все еще находятся на ранней стадии разработки и, по данным Alstom, их первоначальные затраты на 25% выше, экологический, технический и экономический профиль делает водородные поезда привлекательными для замены парка с дизельными двигателями, считают эксперты GS.
При использовании для бытового и промышленного отопления водород можно добавлять в существующие газопроводы с наибольшим потенциалом использования в многоквартирных и коммерческих зданиях, особенно в густонаселенных городах, в то время как более долгосрочные перспективы могут включать прямое использование водорода в водородных котлах или топливных элементах.
Добавление до 20% водорода в газораспределительную сеть требует минимальных или потенциально нулевых модификаций сетевой инфраструктуры или бытовых приборов конечного пользователя, отмечает МЭА.
Проект GRHYD во Франции, который начал подмешивать 6% водорода в сеть природного газа в 2018 году, уже достиг 20% в объемном выражении в 2019 году, демонстрируя техническую осуществимость этого подхода.
Закачка водорода в магистральные газопроводы является более сложной задачей из-за несовместимости материалов при высоких давлениях и более низкого допуска по концентрации водорода в смеси, которую могут принять промышленные пользователи. Однако в рамках некоторых пилотных экспериментов изучается возможность впрыска водорода в такие газопроводы, а проект, разработанный Snam в Италии, уже продемонстрировал возможность подмешивания водорода в объеме до 10%.
На промышленных предприятиях по переработке нефти, производству аммиака, метанола и стали «зеленый» или «голубой» водород может использоваться в качестве топлива (обеспечивая высокотемпературное тепло, требуемое на промышленных предприятиях) или как сырье, помогая сделать соответствующие производства экологически чистыми. Одним из ключевых промышленных применений чистого водорода, которое в последнее время привлекло внимание промышленности, является производство углеродистой стали с нулевым содержанием углерода. В настоящее время осуществляется ряд проектов по развитию этих процессов и продвижению к коммерциализации.
В производстве электроэнергии водород является одним из ведущих вариантов хранения возобновляемой энергии, а водород и аммиак можно использовать в газовых турбинах для повышения гибкости энергосистемы.
Аммиак можно также использовать на угольных электростанциях для сокращения выбросов.
Сколько стоит водородная экономика
Основной статьей затрат при производстве «серого» водорода является стоимость сырья — от 45% до 75% себестоимости, считает МЭА.
При этом, если добавить в схему использование уловителей СО2, затраты вырастают примерно на 50%:
Конечно же, доля сырья в себестоимости для стран, импортирующих газ, выше, чем в странах-производителях.
Согласно отраслевым исследованиям, использование технологий улавливания выбросов при производстве водорода может снизить их на 90%. В настоящее время по всему миру работает 20 крупных объектов CCS (в основном в США, Канаде и Норвегии) с общей мощностью, превышающей 35 млн тонн в год.
Наиболее широко применяемой и зрелой технологией является щелочной электролиз, характеризующийся относительно низкими капитальными затратами на электролизер (менее дорогие, поскольку обычно используется меньше драгоценных металлов по сравнению с другими технологиями электролиза, и с относительно высокой эффективностью, обычно варьирующейся от 55% до 70%).
Эксперты полагают, что «голубой» водород, вероятно, будет в ближайшей и среднесрочной перспективе основным проводником низкоуглеродной энергетики, пока «зеленый» водород не достигнет паритета затрат.
Аналитики МЭА отмечают, что в связи со снижением затрат на возобновляемую электроэнергию, в частности, солнечную энергию и энергию ветра, интерес к электролитическому водороду растет, и в последние годы было реализовано несколько демонстрационных проектов.
Если бы весь водород производился бы сейчас путем электролиза, это привело бы к потребности в электроэнергии в 3600 ТВт*ч, что превышает годовую выработку электроэнергии в Европейском Союзе, подсчитали аналитики агентства.
При снижении затрат на солнечную и ветровую генерацию строительство электролизеров в местах с отличными условиями для возобновляемых ресурсов может стать недорогим вариантом поставки водорода даже с учетом затрат на передачу и распределение при транспортировке водорода из удаленных мест, где используются возобновляемые источники энергии.
Согласно исследованию Wood Mackenzie, к 2040 году затраты на экологически чистый водород упадут на 64%. Так, считают эксперты, с учетом заявленных за последние десять месяцев проектов по «зеленому» водороду, объемы будут достаточно большими и достаточно стабильными, чтобы можно было масштабировать зарождающийся рынок.
«В среднем, к 2040 году затраты на производство зеленого водорода будут равны затратам на водород, вырабатываемый из ископаемого топлива. В некоторых странах, таких как Германия, это произойдет к 2030 году.
Учитывая масштаб, который мы наблюдали до сих пор, 2020-е годы, вероятно, станут десятилетием водорода»,
— отмечают аналитики WoodMac.
В то же время росту конкурентоспособности «зеленого» водорода будет способствовать и рост цен на ископаемые виды топлива. В то время как в 2020 году «серый» водород является самым дешевым водородом, за исключением Китая, Wood Mackenzie ожидает, что к 2040 году затраты на него вырастут на 82%, в основном, из-за роста цен на газ. В Саудовской Аравии и США «серый» водород по-прежнему будет самым дешевым водородом до 2040 года, считают они.
Стоимость «голубого» водорода к 2040 году вырастет, по мнению WoodMac, на 59%. «Успех „голубого“ водорода связан с успехом технологии CCS, которая страдает от высоких затрат и отмены проектов. Как и в случае с „серым“ водородом, прогнозируемый профиль затрат в значительной степени определяется ценами на природный газ», — считают они.
Решение за политиками
«Даже с учетом множества проблем, которые ждут зарождающийся рынок экологически чистого водорода, мы твердо уверены, что в ближайшее время возникнет какая-то форма низкоуглеродной водородной экономики. Учитывая степень четкой политики, корпоративной и социальной поддержки, которая процветала в 2020 году, зеленый водород будет успешно масштабироваться и обеспечивать значительное снижение производственных затрат», — уверены в WoodMac.
«В 2019 году водородные технологии продолжали развиваться, что вызвало большой интерес у политиков. Это был рекордный год для ввода в эксплуатацию электролизных мощностей, и на ближайшие годы было сделано несколько важных заявлений», — полагают аналитики МЭА.
В 2020 году производство низкоуглеродного водорода, как ожидается, составит около 0,46 млн т, уже анонсированы проекты, которые позволят к 2023 году производить 1,45 млн т, а к 2030 году стоит задачу увеличить производство до 7,92 млн т в год, отмечают в агентстве.
Европейский Союз летом текущего года заявил о намерении отказаться от использования ископаемых источников топлив к 2050 году и использовать декарбонизированные газы.
Европа является крупнейшим потребителем российских нефти и газа — основных источников пополнения российского бюджета.
Значит, России придется искать новые пути к своему традиционному партнеру.
«Газпром» уже пытается застолбить для себя нишу в производстве водорода, принимая участие в общественных дискуссиях, проведенных Европейской комиссией по проекту водородной стратегии. «Те предложения, которые мы высказали, — применение пиролиза метана для производства низкоуглеводного водорода — также включены в уже опубликованную стратегию ЕС. И водород, произведенный из природного газа, обладает как экономическими, так и экологическими преимуществами. То есть он может быть произведен без выбросов СО2», — сказал начальник отдела департамента 623 «Газпрома» Константин Романов.
По его словам, сейчас из природного газа в Европе производится более 8 млн тонн водорода в год, и на это используется более 30 млрд кубометров газа. Тогда как по планам ЕС предполагается производить лишь 1 млн тонн водорода с использованием электролиза воды.
«Мы ведем с европейскими партнерами дискуссии, переговоры о реализации пилотных водородных проектов в Европе, в том числе стратегия позволяет использовать и грантовую систему, механизмы грантов Еврокомиссии для развития пиролиза. Мы считаем, что природный газ по-прежнему останется важным источником для водорода и в целом для ЕС», — заключил Романов.
Светлана Кристалинская