Водяное зеркало что это
ЗЕРКАЛО ВОДЫ
Смотреть что такое «ЗЕРКАЛО ВОДЫ» в других словарях:
зеркало воды — 3.21 зеркало воды: Поверхность воды в ванне бассейна при условии, что посетители отсутствуют и аттракционы (если они есть в наличии) не работают. Источник: ГОСТ Р 53491.1 2009: Бассейны. Подготовка воды. Часть 1. Общие требования оригинал… … Словарь-справочник терминов нормативно-технической документации
зеркало воды в межень — Поверхность воды водоема в сезон наиболее низкого ее стояния. [РД 01.120.00 КТН 228 06] Тематики магистральный нефтепроводный транспорт … Справочник технического переводчика
зеркало — 3.1 зеркало: Изделие из бесцветного или окрашенного в массе листового стекла, изготовленное путем нанесения на его поверхность отражающего серебряного и защитного лакокрасочного покрытий. Примечание Защитное лакокрасочное покрытие предназначено… … Словарь-справочник терминов нормативно-технической документации
ЗЕРКАЛО — ЗЕРКАЛО, зеркала, мн. зеркала, зеркал, зеркалам, ср. 1. Блестящая (стеклянная или металлическая), особым способом отшлифованная поверхность, отражающая лучи света так, что на ней получается отображение находящихся перед ней предметов. «Нечего на… … Толковый словарь Ушакова
Зеркало грунтовых вод — поверхность “свободной” воды в почве или грунте. Определяется при бурении скважин. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989. Зеркало грунтовых вод поверхность… … Экологический словарь
ЗЕРКАЛО ГРУНТОВЫХ ВОД — поверхность (верхняя граница) грунтовой воды, отделяющая безнапорные гравитационные воды от капиллярной каймы зоны аэрации. Очертание З. г. в. изображается с помощью гидроизогипс. Син.: скатерть грунтовых вод, поверхность грунтовых вод свободная … Геологическая энциклопедия
зеркало грунтовых вод — Поверхность грунтовой воды, отделяющая безнапорные, гравитационные воды от капиллярной каймы зоны аэрации. [Словарь геологических терминов и понятий. Томский Государственный Университет] Тематики геология, геофизика Обобщающие термины… … Справочник технического переводчика
Зеркало — Зеркало. Всякая гладкая поверхность, плоская или кривая, способнаяотражать свет по определенным направлениям относительно падающего света,в противоположность матовой, отражающей свет по всем направлениям, называется зеркальною, а тело с такою… … Энциклопедия Брокгауза и Ефрона
зеркало — а; мн. зеркала, кал; ср. 1. Гладкая, отполированная поверхность, отражающая находящиеся перед ней предметы. Настенное з. Карманное з. З. с ручкой. Смотреться в з. Причёсываться перед зеркалом. Шкаф с зеркалом. З. телескопа. Медицинское з. Боковое … Энциклопедический словарь
Зеркало вод — водная поверхность рек, озёр и др. водоёмов или поверхность подземных ненапорных вод. В последнем случае за З. в. принимается верхняя граница (поверхность) безнапорных подземных вод в водоносном пласте. Зеркало подземных вод наклонено в… … Большая советская энциклопедия
Зеркало воды в скважине
В теплое время года больше заказов на гидробурение. Ведь автономное водоснабжение нужно организациям и владельцам частных усадеб. И это касается как загородных домов, так и дач. Но с того момента, как начали появляться фермерские хозяйства, также появилась потребность в поливе полей. И для этого на участках земли делаются автономные источники. Специалисты по бурению говорят непонятную для непосвященного человека фразу про зеркало воды в скважине. Что это означает?
§ Что такое зеркало воды в скважине
Необходимо сразу отметить следующее: глубина бурения и зеркало — разные понятия. Во-первых, существует не один водоносный слой. Просто каждый слой находиться на разной глубине. Обычно, первый слой используют только при рытье колодцев, и здесь уровень определить легко.
А во-вторых, много зависит от способа бурения источника. Например, если работать шнековым буром, то при прохождении сухой породы проще определить, когда достигли влаги. При гидробурении постоянно идет подача жидкости, поэтому узнать, когда достигли водоноса будет сложнее.
Что означает это выражение, и зачем это человеку, который заказал бурение? Ответ на простой: это расстояние от верха гидросооружения до поверхности воды. К примеру, общая глубина скважины достигает 15 метров, а до ее поверхности окажется только 8 метров.
Вот и получается следующее: расстояние от устья скважины до воды в ней — зеркало.
§ Как определить зеркало воды
А теперь разберёмся, как определить столб жидкости при разных методах работ.
При выборе насоса нужно знать расстояние до зеркала воды. Особенно это касается ситуации, когда используется не глубинный, а поверхностный насос или насосная станция.
Рассчитайте, с какой глубины насос будет поднимать влагу на поверхность. Слабый насос не справится, а чрезмерно мощный будет неоправданно дорого стоить.
Что такое зеркало воды? Значимость понятия
Что такое зеркало воды? Значимость понятия
При бурении и эксплуатации скважины существует такое понятие, как «зеркало воды». Для стабильного водоснабжения требуется подходящая мощность насоса.
Зеркало воды
Артезианская скважина является надежным источником автономного водопотребления для частных домовладельцев или организаций. При вычислении необходимой производительности насосного оборудования, требуемого для закачки водного ресурса в трубопровод и обеспечения силы напора прохождения жидкости, нужно знать глубину шахты и линию зеркала воды.
Водоносные прослойки расположены на разной глубине. Самый ближний слой к поверхности земли широко используется для колодезной жидкости. Артезианский водный ресурс находится в глубоких водоносах.
Чтобы достичь водного горизонта, используются различные способы бурения. Момент достижения влаги довольно просто определить шнековым буром, который сначала проходит сухую породу. При этом оборудование работает под нагрузкой.
Достигнув водоносного горизонта, создаются совсем другие условия, при которых ведутся работы. Жидкость из первого водоноса пополняет буровое пространство. Во влажной среде нагрузка заметно снижается, а земля становится мокрой.
При использовании технологии гидробурения подача жидкости в процессе работы идет постоянно. Водный поток способствует размягчению породы, вымывая ее наверх. Давление пласта поднимает столб жидкости. Работать в мокрой среде легче, но водонос выявить бывает значительно сложнее, чем в шнековом варианте.
Зеркало воды перед обсадкой оказывается выше водоносного слоя. Бурение продолжается до следующего водонапорного горизонта. Обсадная труба перекроет доступ к верхним водоносам, в которые проникает грязь с поверхности.
После окончания бурения, установки обсадной трубы, водоносный горизонт наполняет пространство. Образуется зеркало воды, которое может опуститься до линии водоноса.
Выполняя артезианское бурение, жидкость выходит через обсадку на поверхность. При этом образуется фонтан, поскольку с большой глубины вода выталкивается наверх под давлением, создаваемым пластами земной коры. В этом случае зеркала воды не создается.
При необходимости пробурить артезианскую скважину можно заказать работы в компании Кимберия. Профессиональные специалисты этой организации выполняют бурение вращательным способом с промывкой, а также оказывают услуги в дальнейшем обустройстве водоисточника.
Важные характеристики
Скважина является сложным гидросооружением, которое имеет свои технические параметры, требующие систематического контроля. Основными характеристиками скважинного водоисточника являются:
При неработающей помпе зеркало воды находится на определенной глубине в спокойном состоянии. Этот уровень называется статическим.
Данная характеристика считается достаточно важной. Поэтому гидромониторинговая служба замеряет ее в различных регионах, используя наблюдательные скважины. Такая информация необходима, чтобы учесть водяные запасы.
В неглубоких шахтах зеркало воды зачастую находится наравне с УГВ, поскольку безнапорный водонос и УГВ связаны гидравлически между собой. При этом не обязательно, что в скважину проникают загрязнения.
Другой важный параметр — динамический уровень определяется при включенном насосе. Этот показатель также измеряется расстоянием, начиная от нулевой точки на земле. Зеркало воды стабилизируется в обсадной трубе при постоянно выкачиваемом водном ресурсе. Используя насосное оборудование разной производительности, значения бывают различными. Динамический урез необходим, чтобы правильно определить высоту, на которую требуется подвесить скважинное насосное устройство.
Задачей насосного оборудования является подъем жидкости на поверхность. Чтобы подобная функция успешно выполнялась, необходимо рассчитать глубину скважины, правильно определиться с производительностью насоса.
Ориентировочно глубину нахождения водоносных горизонтов может узнать у соседей. Трубопровод для подведения воды к дому прокладывается глубже линии промерзания грунта. В Московской области этот уровень расположен на расстоянии 1,5 метров ниже поверхности земли.
Замеры
Для измерения глубины зеркала воды используется простое приспособление. Кусок трубки длиной сантиметров 10 с заглушкой сверху обвязывают шпагатом и опускают в шахту. При касании зеркала воды раздается звук шлепка.
Такой инструмент позволяет измерить динамический урез. При этом насосное оборудование включается, трубка опускается вниз. Периодически проверяется зеркало воды. Настает момент, когда жидкость перестает опускаться. Это означает достижение динамического уровня. Поэтому шпагат следует привязать и продолжать откачивание еще где-то около часа, время от времени проверяя линию поверхности зеркала. Если она не опускается, но можно замерять глубину. Шпагат поднимают, замеряют длину, значение которой является величиной динамического уровня.
Вычисление дебита
Для правильного выбора эксплуатационного насосного устройства нужно узнать дебит скважины. Этот параметр позволяет оценить возможность объемов поставки водного ресурса. Снижение дебита свидетельствует о имеющихся проблемах с водозабором.
Для расчета расходной характеристики водоисточника нужно знать размеры выработки и расстояние до зеркало воды, изменяющееся в зависимости от технических причин, времени года. Дебит можно вычислить по упрощенному способу. Вычисляя расход, производительность помпы определяют удельный и реальный дебиты.
Исходными данными для расчета являются значения уровней в стволе, высота столба воды. Последовательность операций при вычислении такая:
Дебит водоисточника определяется при известной производительности насосного оборудования и установленных уровнях (статического, динамического). Например, разница статического и динамического уровня составляет 5 метров с насосом 1 куб/час. Дебит гидросооружения с водяным столбом в 16 метров равен примерно 16/5 = 3 куб/час, что составляет 200 л на метр.
Водоотдача скважины тем больше, чем меньше разница между уровнями. В артезианских водоисточникам урезы (динамический, статический) совпадают.
Насосное оборудование
Чтобы поднять водный ресурс из скважины на поверхность необходим насос. Важными факторами при выборе оборудования являются:
Насосные устройства бывают поверхностными, погружными, механическими ручными. Для артезианской скважины лучше всего подходит погружная модель. Поверхностные, ручные качают жидкость с небольшой глубины. (до 10 метров). Некоторые модели могут осилить глубину до 30 м.
Хорошее оборудование играет важную роль для бесперебойного водоснабжения. Глубина артезианских скважин зависит от глубины залегания водоносных пластов. Она может составлять более ста метров. В таких условиях применяются специальные насосы, способные работать в артезианских водоисточниках.
Стабильная подача водного ресурса по трубопроводу обеспечивается благодаря погружному насосному оборудованию. Погружной или глубинный насос монтируют в месте водозабора. Минимальный диаметр такого устройства — 3 дюйма, что составляет 76,2 мм. Наиболее популярны 4-дюймовые приборы. Их размер — 101,6 мм.
Такой насос подходит для обсадной трубы с диаметром в 120 мм. Производительность прибора подбирается индивидуально. Глубинное оборудование может поднимать воду со скоростью 20-200 литров в мин. Устройство следует выбирать в зависимости от необходимого объема жидкости для потребительских целей.
Насосное оборудование обладает определёнными параметрами и возможностями. Задачей насоса является создание требуемого напора при перекачке водного ресурса в систему водоснабжения. Для монтажа удобной считается цилиндрическая форма устройства. Иногда к конструкции насоса предъявляется требование перекачки жидкости с примесями песка, глины. Загрязненная вода служит, например, для полива. Чтобы потреблять питьевую воду, она предварительно очищается.
Приобретая требуемый товар, нужно рассчитывать на длительный срок эксплуатации. Выпускаемые модели оборудования различаются качеством изготовления, заводом-производителем, техническими характеристиками. Насосы бывают центробежными, вибрационными.
Производительность погружного вибрационного устройства обычно невысокая. Поэтому он подходит только для скважины небольших глубин. Функционирование такого насоса можно регулировать с помощью вибрационного механизма.
Погружной центробежный насос рассчитан на длительный период использования. Он имеет две основных части: гидравлический элемент (насос) и электродвигатель. При вращении колес вокруг оси производится нагнетание жидкости. Вода поступает в патрубок устройства, создает давление, благодаря которому она поднимается в водопроводную систему.
Достоинства таких моделей:
Насосной частью являются рабочие колеса, закрепленные на валу и размещенные в нержавеющем корпусе. Погружные центробежные насосы имеют, независимо от моделей, сходные конструкции. Некоторые модели способны извлекать и перемещать воду с песчаными примесями. К самым износоустойчивым относятся устройства, в которых важные детали выполнены из нержавеющей стали.
Погружные модели демонстрируют отличную производительность при достаточно лояльной величине электропотребления.
Прокачка
Буровые работы относятся к сложному процессу, в результате которых появляется устойчивый поток жидкости. Однако после окончания процедуры бурения необходимо выполнить прокачку.
Добытая жидкость поначалу может напоминать поток грязи. Пригодный питьевой ресурс можно будет получен после раскачки и выполнения ряда других операций.
Грязный поток получается из-за попадания в шахту мелкого грунта и нерастворимых включений. При бурении происходит сильное заиливание. После прокачки загрязнения удаляются.
Однако проблема заиливания может появиться также впоследствии, поскольку внизу ствола накапливаются различные включения. Это бывает обычно при нерегулярном использовании водоисточника.
Создаваемые отложения вызывают существенные проблемы, решаемые при использовании способа откачки больших объемов водного ресурса
Как узнать на каком уровне вода в скважине?
[Сообщение изменено пользователем 10.06.2014 09:03]
а лучше ничего из простых методов нет
Видимо да. Такой столб воды. А какой должен быть? С водой вроде проблем нет.
[Сообщение изменено пользователем 11.06.2014 00:56]
Сэр Эрнест Резерфорд, президент Королевской Академии и лауреат Нобелевской премии по физике, рассказывал следующую историю, служащую великолепным примером того, что не всегда просто дать единственно правильный ответ на вопрос.
Некоторое время назад коллега обратился ко мне за помошью. Он собирался поставить самую низкую оценку по физике одному из своих студентов, в то время как этот студент утверждал, что заслуживает высшего балла. Оба, преподаватель и студент согласились положиться на суждение третьего лица, незаинтересованного арбитра; выбор пал на меня.
Экзаменационный вопрос гласил: «Объясните, каким образом можно измерить высоту здания с помощью барометра». Ответ студента был таким: «Нужно подняться с барометром на крышу здания, спустить барометр вниз на длинной веревке, а затем втянуть его обратно и измерить длину веревки, которая и покажет точную высоту здания».
Случай был и впрямь сложный, так как ответ был абсолютно полным и верным! С другой стороны, экзамен был по физике, а ответ имел мало общего с применением знаний в этой области.
Я предложил студенту попытаться ответить еще раз. Дав ему шесть минут на подготовку, я предупредил его, что ответ должен демонстрировать знание физических законов. По истечении пяти минут он так и не написал ничего в экзаменационном листе. Я спросил его, сдается ли он, но он заявил, что у него есть несколько решений проблемы, и он просто выбирает лучшее.
Заинтересовавшись, я попросил молодого человека приступить к ответу, не дожидаясь истечения отведенного срока. Новый ответ на вопрос гласил: «Поднимитесь с барометром на крышу и бросьте его вниз, замеряя время падения. Затем, используя формулу L = (a*t^2)/2, вычислите высоту здания».
Тут я спросил моего коллегу, преподавателя, доволен ли он этим ответом. Тот, наконец, сдался, признав ответ удовлетворительным. Однако студент упоминал, что знает несколько ответов, и я попросил его открыть их нам.
«Есть несколько способов измерить высоту здания с помощью барометра», начал студент. «Например, можно выйти на улицу в солнечный день и измерить высоту барометра и его тени, а также измерить длину тени здания. Затем, решив несложную пропорцию, определить высоту самого здания.»
«Неплохо», сказал я. «Есть и другие способы?»
«Да. Есть очень простой способ, который, уверен, вам понравится. Вы берете барометр в руки и поднимаетесь по лестнице, прикладывая барометр к стене и делая отметки. Сосчитав количество этих отметок и умножив его на размер барометра, вы получите высоту здания. Вполне очевидный метод.»
«Если вы хотите более сложный способ», продолжал он, «то привяжите к барометру шнурок и, раскачивая его, как маятник, определите величину гравитации у основания здания и на его крыше. Из разницы между этими величинами, в принципе, можно вычислить высоту здания. В этом же случае, привязав к барометру шнурок, вы можете подняться в вашим маятником на крышу и, раскачивая его, вычислить высоту здания по периоду прецессии.»
«Наконец», заключил он, «среди множества прочих способов решения проблемы лучшим, пожалуй, является такой: возьмите барометр с собой, найдите управляющего зданием и скажите ему: «Господин управляющий, у меня есть замечательный барометр. Он ваш, если вы скажете мне высоту этого здания».
Тут я спросил студента — неужели он действительно не знал общепринятого решения этой задачи. Он признался, что знал, но сказал при этом, что сыт по горло школой и колледжем, где учителя навязывают ученикам свой способ мышления.
Студентом этим был Нильс Бор (1885–1962), датский физик, лауреат Нобелевской премии 1922 г.
Вот возможные решения этой задачи, предложенные им:
1. Измерить время падения барометра с вершины башни. Высота башни однозначно рассчитывается через время и ускорение свободного падения. Данное решение является наиболее традиционным и потому наименее интересным.
2. С помощью барометра, находящегося на одном уровне с основанием башни, пустить солнечный зайчик в глаз наблюдателя, находящегося на ее вершине. Высота башни рассчитывается исходя из угла возвышения солнца над горизонтом, угла наклона барометра и расстояния от барометра до башни.
3. Измерить время всплывания барометра со дна заполненной водой башни. Скорость всплывания барометра измерить в ближайшем бассейне или ведре. В случае, если барометр тяжелее воды, привязать к нему воздушный шарик.
4. Положить барометр на башню. Измерить величину деформации сжатия башни. Высота башни находится через закон Гука.
5. Насыпать кучу барометров такой же высоты, что и башня. Высота башни рассчитывается через диаметр основания кучи и коэффициент осыпания барометров, который можно вычислить, например, с помощью меньшей кучи.
6. Закрепить барометр на вершине башни. Послать кого-нибудь наверх снять показания с барометра. Высота башни рассчитывается исходя из скорости передвижения посланного человека и времени его отсутствия.
7. Натереть барометром шерсть на вершине и у основания башни. Измерить силу взаимного отталкивания вершины и основания. Она будет обратно пропорциональна высоте башни.
8. Вывести башню и барометр в открытый космос. Установить их неподвижно друг относительно друга на фиксированном расстоянии. Измерить время падения барометра на башню. Высота башни находится через массу барометра, время падения, диаметр и плотность башни.
9. Положить башню на землю. Перекатывать барометр от вершины к основанию, считая число оборотов. (Способ, ставший популярным в России под кодовым названием «имени 38 попугаев»).
10. Закопать башню в землю. Вынуть башню. Полученную яму заполнить барометрами. Зная диаметр башни и количество барометров, приходящееся на единицу объема, рассчитать высоту башни.
11. Измерить вес барометра на поверхности и на дне ямы, полученной в предыдущем опыте. Разность значений однозначно определит высоту башни.
12. Наклонить башню. Привязать к барометру длинную веревку и спустить его до поверхности земли. Рассчитать высоту башни по расстоянию от места касания барометром земли до башни и углу между башней и веревкой.
13. Поставить башню на барометр, измерить величину деформации барометра. Для расчета высоты башни необходимо также знать ее массу и диаметр.
14. Взять один атом барометра. Положить его на вершину башни. Измерить вероятность нахождения электронов данного атома у подножия башни. Она однозначно определит высоту башни.
15. Продать барометр на рынке. На вырученные деньги купить бутылку виски, с помощью которой узнать у архитектора высоту башни.
16. Нагреть воздух в башне до определенной температуры, предварительно ее загерметизировав. Проделать в башне дырочку, около которой закрепить на пружине барометр. Построить график зависимости натяжения пружины от времени. Проинтегрировать график и, зная диаметр отверстия, найти количество воздуха, вышедшее из башни вследствие теплового расширения. Эта величина будет прямо пропорциональна объему башни. Зная объем и диаметр башни, элементарно находим ее высоту.
17. Измерить с помощью барометра высоту половины башни. Высоту башни вычислить, умножив полученное значение на 2.
18. Привязать к барометру веревку длиной с башню. Использовать полученную конструкцию вместо маятника. Период колебаний этого маятника однозначно определит высоту башни.
19. Выкачать из башни воздух. Закачать его туда снова в строго фиксированном количестве. Измерить барометром давление (!) внутри башни. Оно будет обратно пропорционально объему башни. А по объему высоту мы уже находили.
20. Соединить башню и барометр в электрическую цепь сначала последовательно, а потом параллельно. Зная напряжение, сопротивление барометра, удельное сопротивление башни и измерив в обоих случаях силу тока, рассчитать высоту башни.
21. Положить башню на две опоры. Посередине подвесить барометр. Высота (или в данном случае длина) башни определяется по величине изгиба, возникшего под действием веса барометра.
22. Уравновесить башню и барометр на рычаге. Зная плотность и диаметр башни, плечи рычага и массу барометра, рассчитать высоту башни.
23. Измерить разность потенциальных энергий барометра на вершине и у основания башни. Она будет прямо пропорциональна высоте башни.
24. Посадить внутри башни дерево. Вынуть из корпуса барометра ненужные детали и использовать полученный сосуд для полива дерева. Когда дерево дорастет до вершины башни, спилить его и сжечь. По количеству выделившейся энергии определить высоту башни.
25. Поместить барометр в произвольной точке пространства. Измерить расстояние между барометром и вершиной и между барометром и основанием башни, а также угол между направлением от барометра на вершину и основание. Высоту башни рассчитать по теореме косинусов.
Что такое зеркало воды в скважине
Знаете ли Вы, что означает этот термин?
Кольматация пласта — закупоривание пор для протока воды в пласте частичками глины из бурового раствора в результате нарушения технологии бурения.
Заказчик должен понимать язык буровика, чтобы правильно оценивать ситуацию во время процесса или читая статьи на строительных форумах.
Уровень воды в скважине
Вы стали счастливым обладателем скважины на воду. Но учитывайте то что скважина это не просто отверстие в земле, а сложное гидротехническое сооружение, следовательно обладает своими техническими характеристиками, которые нужно периодически контролировать. Основными параметрами любой скважины на воду являются глубина. дебит. статический и динамический уровни скважины. Все эти показатели обычно фиксируются буровым мастером и заносятся в основополагающий документ — паспорт скважины на воду.
Если с дебитом и глубиной скважины все более-менее ясно то понятия статический и динамический уровень часто ставят в тупик владельцев загородных домов и дач. Для чего нужно знать эти цифры и как их правильно применять — давайте рассмотрим поподробнее.
Статический уровень скважины на воду — это та глубина от земной поверхности или нуля на которой находится водяное зеркало в скважине в спокойном состоянии. т.е. когда насос выключен. Иначе его еще называют пьезометрическим уровнем. Это очень ценный и важный показатель, недаром существует специальная служба гидромониторинга которая постоянно замеряет статический уровень воды в специально пробуренных наблюдательных скважинах по всей территории Тюменской области. На основании этих данных в дальнейшем ведется учет запасов подземных вод.
В неглубоких песчаных скважинах статический уровень чаще всего совпадает с уровнем грунтовых вод (УГВ). Многие владельцы скважин часто задают вопрос — почему вода в скважине стоит на расстоянии 1-2 метра от поверхности земли или вровень с поверхностью? Не связано ли это с тем что в скважину попадает верховодка с поверхности почвы? Разрешить такой вопрос помогает простой эксперимент — при откачке воды и понижении уровня внутри обсадной трубы понижения уровня в незасыпанном затрубном пространстве не происходит — следовательно перетока нет.
В неглубоких песчаных скважинах уровень воды совпадает с УГВ по той простой причине что горизонт УГВ и скважинный безнапорный горизонт гидравлически связаны друг с другом. Это вовсе не означает что химический состав воды в них одинаков и вся грязь с поверхности попадает в скважину — это совсем не так. Чаще всего связь горизонтов происходит в крупных чащах естественных водоемов, в Тюмени это оз. Андреевское, оз Липовое, русло и старицы реки Туры и другие крупные озера — они являются своеобразными «окнами» в водоупорном слое, в итоге объединяют между собой два горизонта — скважинный и колодезную верховодку и начинает действовать правило сообщающихся сосудов, т.е. уровень воды в скважине совпадет с уровнем близлежащего водоема в 90% случаев плюс-минус пару метров.
Конечно существуют еще так называемые подпорные грунтовые воды когда уровень искусственно завышен из-за рельефа местности или низкой скорости разгрузки пластов но в Тюмени такие встречаются довольно редко.
Динамический уровень воды в скважине — это уровень воды при работающем насосе. Измеряется также в метрах от поверхности земли, обычно фиксируется в паспорте скважины. Причем необходимо учитывать что для каждого насоса динамический уровень будет разный, в зависимости от производительности. Это тоже достаточно важный показатель, и его необходимо знать чтобы выбрать оптимальную высоту подвешивания скважинного насоса. Но как померить уровень если в скважине опущен работающий насос и трубопровод с кабелем к нему?
Уровень воды в скважине замеряется с помощью нехитрого приспособления которое легко изготовить буквально «на коленке». Принцип достаточно прост — берется кусок трубки с заглушенным верхним концом и опускается в скважину на шпагате или мерной ленте. При касании трубкой зеркала воды слышен отчетливый громкий шлепок, поэтому инструмент называют шлепалкой или лягушкой. Самый простой вариант изготовления шлепалки — взять кусок ПНД или другой пластиковой трубы длиной 10-15 см, забить в один конец короткую деревянную заглушку-чопик и вкрутить в нее саморез для крепления шпагата. По бокам чопик также зафиксировать короткими саморезами
Методика измерения динамического уровня воды в скважине очень проста. Включается насос, опускается «шлепалка» и периодическим подергиванием на 20-30 см проверяется зеркало, при необходимости шпагат вытравливается. Как только зеркало перестает опускаться значит динамический уровень для этого насоса достигнут. После этого шпагат привязывается и продолжается откачка скважины в течении получаса или часа, с периодической проверкой зеркала. Если уровень воды не опускается или опускается незначительно то динамический уровень установился. Можно поднимать шпагат и измерять его длину погруженную в скважину — это и есть динамический уровень вашего источника воды.
Зная статический и динамический уровень а также производительность насоса можно легко подсчитать дебит скважины. К примеру насос с подачей 1 куб в час дает разницу между статическим и динамическим уровнем скважины в 5 метров. Если столб воды в скважине составляет 16-18 метров то фактический ее дебит составит примерно 16/5 = 3 кубических метра в час. или 200 литров на метр — это так называемый удельный дебит. Учитывая то что не рекомендуется опускать динамический уровень ниже 2/3 от общей высоты водяного столба в скважине то эксплуатационный дебит составит 2-2.2 куба в час.
Следует учитывать что динамический и статический уровень не являются постоянными величинами — в связи с сезонными колебаниями они могут изменяться, к примеру статический уровень как и УГВ опускается в засушливые периоды.
Бурение скважин на воду
В Киевской, Черниговской, Сумской и Полтавской областях.     Вы просто позвоните нам, а все остальное мы сделаем сами!     Ведь мы не только бурим скважины, а делаем все, от начала, и до конца!     А цены вас приятно удивят!      
Главная   Наши услуги   Статьи о бурении   Новости сайта   Наши контакты    
Зеркало скважины
  Природа зеркала скважины на воду очень простая, как и само понятие. Мы бурим скважину на воду образно говоря в сухой породе. И вот доходим до первого водоносного горизонта. Далее мы будим бурить уже совсем в другой среде, а именно в гидросфере Земли. Так как вода с первого водоносного горизонта теперь постоянно будет пополнять наше буровое пространство. Если мы до этого бурили шнековым буром, то получается что бурили в сухой среде, и теперь переходим в мокрую среду. А если мы бурили методом гидроударного бурения, с постоянной подачей воды в буровое, рабочее, пространство, тогда ощутимой разницы мы не заметим. Подаваемая в скважину вода, как правило размягчает породу и вымывает ее, потому бурить в мокрой среде будет в любом случае легче чем в сухой среде. И вот мы пробурили, извлекаем штанги со скважиныи получаем зеркало воды, которое по глубине примерно равно глубине самого верхнего водоносного горизонта, с которого собственно вода и наполняет верхнее пространство скважины:
  Вот что означает само понятие «зеркало скважины» или «зеркало воды». Когда ставим обсаднуб трубу, то зеркало скважины опускается до уровня того водоносного горизонта, к которому мы добурились, так как именно обсадная труба изолирует верхние водоносные горизонты от того, с которого мы собрались получать воду.
  Если речь идет об артезианской скважине на воду, то там зеркала воды, как правило, нет. А получается вот такая картина:
Такое, как правило получается тогда, когда водный горизонт лежит глубоко, и на него создают давление пласты земной коры.
  Обращайтесь к нам, мы много чего знаем, много чего умеем, ведь мы давно этим занимаемся! Наши телефоны и расценки справа — звоните!
Динамический уровень воды в скважине. Его характеристика и замер
Любая скважина, предназначенная для частного водоснабжения, обладает особыми характеристиками и параметрами, которые индивидуальны только для этого типа источника. Одним из важнейших показателей можно выделить динамический уровень. который можно определить только после того, как конструкция была введена в эксплуатацию.
На этапе бурения источника для воды, вы можете стать очевидцем сильного напора воды, который подается на поверхность под давлением водоносного пласта. После того, как конструкция готова и простояла в бездействии порядка 60 минут, можно определять статический уровень воды в скважине. Можно считать, что высота водяного пласта это и есть этот уровень.
Расположение уровней в скважине и их высота
Особенности динамического уровня, отличие его от статического
Чем отличается динамический уровень от статического? Этот вопрос волнует каждого владельца автономного водоснабжения. На самом деле в этом случае неуместно говорить о каких-то различиях так как это два индивидуальных параметра.
Высота воды, которая определяется после получасовой работы насосного оборудования и считается динамическим уровнем. В идеале эти два замера должны быть не более одного метра между собой.
Внимание!Если разность между статическим и динамическим уровнем влаги в колодце составляет от 1,2 до 2,0 метра, необходимо принять соответствующие мероприятия. Такая отметка говорит о неправильной работе скважины.
Очень часто статический уровень изменяется из-за воздействующих на него факторов. В скважину могут попадать осадки, загрязнения из почвенных слоев и постепенный уход воды. Тем не менее этот тип высоты водного столба считается обязательным для выбора насосной станции для откачивания жидкости.
Отсюда следует выделить, что взаимосвязь между динамическим и статическим уровнем неизменна. И чтобы их правильно определить потребуется тщательная слежка за эксплуатацией источника.
Замер динамического уровня воды в скважине
Правильный замер динамического уровня воды
В данную процедуру стоит внести несколько этапов, так как ее выполнять таким образом будет намного проще. Зеркало воды измеряется дважды: то есть изначально определяют статику, а после динамику. Как раз так мы и поступим.
Анализ динамического уровня на компьютере
Такое измерение всегда считается достоверным, и, если есть какие-то недостатки в работе источника, их нужно устранить. В противном случае снизится дебит скважины или колодца.
Обратите внимание!Резкий выход воды из колодца на поверхность после бурения производится под воздействием подземного давления, а при одновременном влиянии на водяной столб еще и атмосферного давления, уровень приходит в норму и стабилизируется на определенной высоте.
Чтобы разница уровней не превышала норму
Выше мы уже объясняли какой должна быть норма между динамическим и статическим уровнем жидкости в источнике автономного водоснабжения. И чтобы этот показатель всегда был идеальным следует предпринимать следующие меры:
Отличие статического и динамического уровня
Для нормальной работы насосов принято использовать автоматику, которая будет контролировать динамический уровень влаги, тем самым защитит оборудование от перегрева.
Важно!Динамический уровень скважины — это параметр, который всегда нужно контролировать. Это обеспечит более длительную эксплуатацию источника водоснабжения.