Врм что это в компьютере
Что такое VRM на видеокарте?
Всем привет! Сегодня обсудим VRM на видеокарте: что это такое, как ее посмотреть, какая нормальная и максимально допустимая температура, как охладить видеокарту в случае сильного перегрева. О том, что означает Dual в маркировке GPU, читайте здесь.
Что такое VRM 1 и VRM 2
В любой видеокарте есть датчики ВРМ 1 и ВРМ 2, показатели которых существенно превышают параметры нагрева графического чипа. Если процессор ГПУ нагревается до 65-70 градусов, то ВРМ может достигать 90 градусов. И это ситуация не «из ряда вон», а скорее нормальная для такого режима работы.
Под этими аббревиатурами «прячутся» транзисторы системы питания, которые поставляют энергию графическому чипу и видеопамяти. Если рассмотреть печатную платы GPU, можно увидеть зону, где расположено десяток транзисторов и конденсаторов, выставленных в ряд.
Вот их температуру и показывает ВРМ. Часто для защиты от перегрева эти компоненты оборудованы собственным радиатором, а иногда и дополнительной тепловой трубкой, связанной с радиатором основной системы охлаждения.
Как узнать температуру VRM
Отдельно измерять эту температуру не нужно: силовые элементы оборудованы собственными датчиками, доступ к которым может получить любая диагностическая утилита — GPU-Z, Speccy, HWMonitor, AIDA64 или Sisoftware Sandra.
Чем ниже эта температура, тем лучше. Однако если вы во время диагностики увидите цифру 85-90 градусов, не следует паниковать: для таких компонентов это норма. Задуматься об охлаждении стоит, если она поднимается выше.
Что сделать в такой ситуации? Прежде всего, почистить устройство от пыли, из-за обилия которой обычно и случается перегрев. Если не помогло, стоит установить дополнительный корпусный вентилятор, направив его на графический адаптер.
Отдельно хочу уточнить, что бывает такое очень редко. Даже если вы разогнали ГПУ, с большой вероятностью поднимется температура чипа и видеопамяти, но транзисторы с конденсаторами будут работать в том же режиме, пропуская ненамного больше электрического тока.
Также советую почитать «Что такое шейдеры в видеокарте» и «GDDR5 – что это такое и какие еще есть типы видеопамяти?». Не забывайте поделиться этим постом в социальных сетях — буду очень признателен. До скорой встречи на страницах моего блога!
Как работает VRM материнских плат
В любом компьютере есть электрические цепи, ответственные за формирование нужных напряжений для процессора, видеокарты и других устройств. К наиболее важным из них относятся схемы регулировки напряжения VRM (voltage regulator modules).
В данной статье рассматриваются базовые особенности функционирования VRM на материнских платах. Знание особенностей работы подсистемы питания помогут обдуманнее относиться к выбору материнских плат и обеспечению их оптимального режима работы.
Для чего нужны цепи VRM на материнской плате?
VRM в компьютере понижают питающие напряжения от блока питания (3.3, 5, 12 вольт) до значений, нужных для электронных элементов питаемых устройств (обычно в пределах 0,5-1,5 вольт).
Место VRM в цепи питания процессора компьютера:
Основные элементы VRM на материнской плате компьютера:
Цепи VRM у видеокарт и материнских плат состоят из понижающих преобразователей постоянного напряжения (DC-to-DC buck power converters) с несколькими фазами. Они работают синхронно со сдвигом импульсов (смещением фаз) относительно друг друга.
Графики, иллюстрирующие включение/работу каждой из четырех фаз питания в зависимости от управляющих импульсов ШИМ-контроллера (PWM):
Основную токовую нагрузку фаз VRM принимают на себя полевые транзисторы, которые работают в качестве ключей – переключателей, пропускающих через себя импульсы тока от блока питания на выходной LC-контур.
Обычно чем больше фаз используется для обеспечения нужного напряжения, тем лучше. Это связано с уменьшением времени работы под нагрузкой элементов каждой фазы, что благотворно сказывается на температурном режиме, увеличивает суммарную отдаваемую мощность, время бесперебойной работы и общую надежность системы.
Как работают фазы питания VRM?
Одна фаза VRM представляет собой совокупность драйвера, полевых транзисторов, дросселя и конденсатора.
Упрощенная блок-схема полноценной фазы питания:
Полноценная блок-схема одной фазы питания процессора:
Типовая электрическая схема одной фазы питания процессора:
Как видно из схемы, один из МДП-транзисторов (верхнее плечо) стоком подключен к шине питания +12 В, а второй (нижнее плечо) — истоком к массе.
В большинстве случаев в VRM используется запараллеливание нескольких фаз для выигрыша мощности и улучшения режима работы использующихся компонентов.
Упрощенная схема трехфазного VRM:
Каждая фаза питания VRM состоит из следующих электронных элементов:
Полевые транзисторы фаз управляются ШИМ-контроллером (PWM chip), который формирует управляющие импульсы, открывающие (в нужное время) затворы силовых транзисторов через драйвер.
Функционально каждая фаза состоит из трех частей: цепей логики, силовой части и фильтра.
Логическая часть VRM состоит из контроллера напряжения (voltage controller) и ШИМ-контроллера (Pulse Width Modulator).
Задача контроллера ШИМ – отслеживать выходное напряжение и управлять драйверами и удвоителями (если последние есть в схеме). В зависимости от состояния питания на выходе VRM корректируется значение скважности управляющих ШИМ-импульсов, которые используются драйверами для открытия/закрытия затворов ключевых транзисторов.
Для стабилизации выходного напряжения используется изменение скважности импульсов ШИМ через цепь обратной связи, в которой происходит сравнение референсного и выходного напряжений:
Драйвера и удвоители (doublers) непосредственно соединены с MOSFET-ами и являются составными элементами силовой части VRM. Задача драйвера – создать управляющий транзистором сигнал нужного напряжения.
Драйвер осуществляет прямое управление процессами открытия-закрытия транзисторов с частотой, задаваемой ШИМ-контроллером.
Удвоитель делит на два частоту сигнала от ШИМ и распределяет полученные управляющие импульсы по виртуальным фазам. Он создает нужное для полевого транзистора управляющее напряжение, а время открытия и закрытия транзисторов определяет ШИМ.
Блок-схема двух виртуальных фаз питания, полученных с помощью дублирования сигнала ШИМ-контроллера:
Пример использования удвоителя для получения12 виртуальных фаз с шестиканальным контроллером ШИМ:
Использование удвоителей позволяет снизить требования к максимальному току через транзисторы силовых ключей. При этом в жертву приносится форма выходного напряжения. Это происходит из-за уменьшения вдвое частоты следования управляющих ШИМ-импульсов на виртуальных фазах.
Управляющие импульсы от ШИМ-контроллера в схеме с удвоителями делятся на две фазы:
Выходные импульсы с удвоителя имеют уменьшенную вдвое частоту по сравнению с исходным сигналом от ШИМ-контроллера:
В фильтрующей части VRM с помощью конденсаторов производится сглаживание и фильтрация выходного напряжения от помех.
Блок-схема четырехфазной схемы VRM процессора:
Схема восьмифазного VRM материнской платы:
Процессы, происходящие в VRM во время рабочего цикла
Для управления ключевыми транзисторами в импульсных регуляторах напряжения применяются импульсы широтно-импульсной модуляции:
Каждый управляющий импульс от ШИМ инициирует переключение полевых транзисторов верхнего и нижнего плеча, что обеспечивает пропускание тока в выходной контур VRM:
Когда транзистор верхнего плеча открыт (переключатель сток-исток замкнут), напряжение в точке А однофазной схемы равно 12 вольтам.
При этом начинает проходить ток через катушку индуктивности, рост напряжения в точке B (выход дросселя) происходит с замедлением из-за падения напряжения в катушке индуктивности, вызванного индукцией электромагнитного поля. По мере увеличения напряженности магнитного поля, падение напряжения на реактивном сопротивлении катушки уменьшается, и вольтаж на ее выходе достигает 12 вольт.
Чем больше индуктивность катушки, тем больше время, за которое напряжение на ее выходе станет равным 12 вольтам и, соответственно, она накопит больше магнитной энергии.
Когда ключ верхнего плеча размыкается (транзистор закрыт), напряжение в точке A становиться равным нулю. Катушка индуктивности при этом начинает терять накопленный магнитный заряд, что вызывает генерацию тока в точке B (за счет явления электромагнитной индукции), которая является выходом VRM на процессор.
Таким образом, в точке B появляется напряжение от катушки индуктивности L. Для его гашения в цепи обычно используется обратноходовой диод (flyback diode), изображенный на схеме:
В связи с тем, что диоды имею низкую эффективность, обусловленную падением напряжения на p-n переходе (подробнее в статье «Увеличение КПД выпрямителей импульсных блоков питания»), в этот момент замыкается ключ, образованный стоком-истоком транзистора нижнего плеча. Благодаря этому ток в большей мере течет через полевой транзистор, имеющий меньшее сопротивление, чем диод, что увеличивает эффективность схемы.
Для регулировки выходного напряжения на процессор (обычно 1,2 вольт) используется периодическое отключение заряда катушки индуктивности в момент, когда напряжение на точке B становиться равным 1,2 V.
При этом некоторое время нужное напряжение отдают катушка индуктивности и конденсатор, но все равно, через некоторое время начинается падение выходного напряжения ниже уровня 1,2 вольт. Через цепь обратной связи производится повторное замыкание верхнего плеча и повторение процесса заряда-разряда LC-контура. Этот цикл повторяется снова и снова под управлением широтно-импульсной модуляции, частота которой автоматически устанавливается так, чтобы обеспечить выходное напряжение заданного номинала.
Таким образом, транзисторы фаз понижают входное напряжение от блока питания (+12 В) до нужных значений с помощью периодической коммутации цепи LC к земле и +12 В. Управляя скважностью (отношением периода к длительности импульса) импульсов ШИМ, можно стабилизировать формируемые выходные напряжения при разном токе нагрузки.
Например, чтобы добиться выходного напряжения, равного 1,2 вольтам, нужно уменьшить время цикла до 10%. Это даст десятикратное уменьшение напряжения на выходе преобразователя по сравнению с питающими 12 V:
В многофазной системе аналогичные процессы происходят параллельно:
Пример электрической схемы трехфазного VRM процессора:
Благодаря сложению импульсов, формируемых каждой фазой, улучшается форма выходного напряжения (в нем становиться меньше пульсаций):
Пульсации выходного напряжения снижаются пропорционально увеличению количества фаз и уменьшением времени их рабочего цикла:
Форма результирующего выходного напряжения на выходе четырехфазного VRM:
Управляющий сигнал от ШИМ-контроллера поступает на затворы, открывая и закрывая их в соответствии с частотой подаваемых сигналов. Чем выше рабочая частота ШИМ, тем меньше уровень пульсаций выходного напряжения, но, в то же время, меньше КПД, и больше нагрев электронных элементов.
При параллельном включении нескольких синхронно работающих фаз, выходное напряжение очень стабильно, и имеет мало пульсаций. Суммарный выходной ток в многофазном VRM кратен току через все параллельные фазы, каждая из которых работает в наиболее эффективном щадящем (экономичном) режиме.
График зависимости эффективности полевых транзисторов зоны VRM материнской платы Gigabyte Z97X-SOC Force (8 фаз на мосфетах IR3553 с восьмиканальным ШИМ-контроллером IR3580):
Как видно из графика, наименьшие потери у полевых транзисторов этой материнской платы наблюдаются при протекающем токе порядка 10 ампер. При увеличении проходящего тока увеличивается нагрев транзистора, что приводит к значительному падению его эффективности.
Для продления жизни электронных компонентов стоит всячески бороться за снижение температуры их эксплуатации, что полезно как для увеличения заложенного в них ресурса, так и для уменьшения счетов за электричество. Это оправданно и для видеокарт, и для процессоров.
Какие электронные элементы используются в цепях VRM?
В цепях VRM процессора (и других) обычно используются следующие электронные элементы:
Пример расположения основных компонентов VRM на материнской плате:
Изображение конденсаторов и катушек индуктивности, использующихся в VRM:
Образцы различных ШИМ-контроллеров:
Изображение полевых транзисторов, использующихся в преобразователях VRM:
Изображение различных драйверов и удвоителей:
Часто в одном корпусе интегральной схемы находятся ШИМ-контроллер, драйверы, транзисторы, а также другие элементы. Это уменьшает габариты и стоимость таких изделий.
Четырехфазный VRM с чипами IR3555, которые включают в одном корпусе интегрированный драйвер, диод Шоттки и два MOSFET-а:
На что нужно обращать внимание при выборе материнской платы?
Чем больше реальных фаз питания у материнской платы или видеокарты, тем надежнее ее система питания и качественнее само изделие. Кроме того, на высококачественных моделях зона VRM обязательно имеет собственное охлаждение.
При выборе материнской платы стоит обращать внимание на реальное количество фаз и драйверов, а не просто считать катушки индуктивности в зоне VRM.
Три сдвоенные фазы питания на материнской плате ASRock Fatal1ty AB350 Gaming (на первый взгляд кажется, что используется 6 фаз, так как отчетливо видно 6 дросселей, выделенных зеленым цветом):
Например, на плате ASRock Fatal1ty AB350 Gaming с якобы шестью фазами питания используется ШИМ-контроллер Intersil ISL95712, который может управлять 4+3 фазами. При этом для первых четырех имеется всего два интегрированных драйвера, и еще один на три других фазы. Таким образом, для получения виртуальных 6 фаз питания на процессор используется дублирование силовых компонентов, управляемых всего тремя драйверами, что не есть гуд.
Какие схемотехнические решения VRM лучше избегать?
Схемы с удвоением сигнала ШИМ улучшают эффективность работы VRM за счет снижения качества выходного напряжения. В связи с этим при одинаковом количестве фаз на плате лучше выбрать такую, у которой они реальные, без удвоителей.
Недобросовестные производители используют упрощенные схемы VRM, в которых используется один ШИМ-сигнал для управления двумя разными цепями без удвоителя:
В этом случае используется один драйвер на две фазы, что значительно уменьшает надежность работы VRM и еще больше ухудшает качество выходного напряжения.
Блок-схема имитационных фаз питания, полученных за счет дублирования силовых компонентов при использовании одного драйвера:
Такая схема дает увеличение выходного тока, а также улучшение температурного режима ключевых транзисторов, но выходное напряжение имеет большие провалы, чем при использовании реальных и даже виртуальных фаз.
В связи с этим не стоит использовать материнские платы с VRM, в которых используется меньше драйверов, чем число использующихся фаз.
Всегда ли наличие большого количества фаз питания на плате гарантирует высокое качество изделия?
Наличие большого количества фаз питания не всегда гарантирует высокое качество изделия, так как при использовании некачественных элементов, плохо продуманной компоновке и отсутствии радиаторов многофазная система питания хоть и будет обеспечивать нужное напряжение, но будет перегреваться, что, в конце концов, приведет к ее поломке.
Кроме того, иногда лучше использовать четырехфазную систему питания с качественными компонентам и радиаторами, чем плохо исполненную восьмифазную безрадиаторную схему.
При покупке той или иной материнской платы/видеокарты нужно всегда внимательно изучать практическую реализацию схемы VRM, наличие радиаторов, обдув и т.д.
Недобросовестные производители иногда сознательно вводят в заблуждение покупателей, устанавливая фейковые фазы питания, декоративные радиаторы, некачественные конденсаторы и резисторы.
Noname-производители, а порой и и звестные бренды иногда имитируют на плате большое количество фаз, скромно умалчивая об установке удвоителей, параллельном использовании силовых элементов вместо применения реальных фаз.
Хотя такие решения уменьшают нагрузку на часть электронных компонентов, а также увеличивают максимальный допустимый ток через транзисторы, все-таки лучше поискать материнские платы с полноценными фазами питания, которые обеспечивают меньший уровень пульсаций, имеют хорошую балансировку VRM, что уменьшает риск их выхода из строя.
Для сравнения далее приводятся данные по материнским платам с примерно одинаковым числом фаз питания процессора:
Исходя из эффективности и температуры VRM этих плат, они имеют следующий рейтинг:
В качестве негативных примеров с точки зрения VRM можно привести материнские платы:
При покупке качественной платы нужно учитывать, что не существует ШИМ-контроллеров на больше чем 8 фаз. Для увеличения их количества используются удвоители (doublers). Платы с 12,!6 и даже 24 фазами питания используют именно удвоители фаз в своих VRM.
Изображение VRM материнской платы ASUS P6X58D-E с 16 виртуальными фазами:
В этой плате для увеличения количества фаз используются EPU chip ASP0800 в паре с PEM чипом ASP0801, каждый из которых обеспечивает работу дополнительных 4 фаз, синхронизированных с реальными 8 фазами от ШИМ-контроллера.
Для еще большего увеличения количества рабочих фаз используют учетверители ШИМ-сигнала:
Кроме того, производителями используются и другие ухищрения для увеличения количества фаз, например:
Обеспечение оптимального температурного режима зоны VRM
При установке на материнскую плату мощных многоядерных процессоров, майнинге на CPU, зона VRM должна обязательно иметь радиаторы. В крайнем случае, на полевики материнки можно наклеить термопроводящим скотчем маленькие радиаторы, купленные на Banggood. При этом нужно обязательно периодически контролировать температуру MOSFET-ов, так как при выходе их из строя может сгореть и дорогостоящий процессор.
Для контроля температуры можно использовать программы типа HWiNFO, либо бесконтактные инфракрасные измерители температуры/тепловизоры. Температура самых горячих компонентов зоны VRM не должна превышать 80 градусов. Кратковременно они могут выдерживать и сто градусов по Цельсию, но в режиме 24/24 это быстро приведет к их выходу из строя. Кроме VRM нужно контролировать температур чипсета (на нем должен быть установлен маленький радиатор), и, естественно, самого процессора.
Поддержание оптимальной температуры положительно сказывается не только на продолжительности бесперебойной работы, но и на экономичности, так как транзисторы работают с большей эффективностью, что немаловажно при майнинге.
В летнее время для уменьшения температуры зоны VRM стоит уменьшить количество ядер процессора, задействованных в майнинге, либо вообще отключать его во время полуденной жары. Если не удается понизить температуру VRM на материнской плате ниже 70 градусов, стоит установить дополнительный вентилятор, обдувающий эту зону.
Схемотехника питания материнких плат
На все материнские платы подается постоянное напряжение, которое должно обеспечивать стабильность питания всех узлов материнской платы. Питание подается следующих номиналов: ±12, ±5 и +3,3В. При этом, по каждому каналу напряжений должен обеспечиваться соответствующий необходимый потребляемый ток.
Наибольший ток потребляется процессором и подается на видеокарту через слот AGP или PCI — Express и через дополнительные разъемы питания на ней. Для стабильности работы всех узлов материнской платы (процессора, слотов памяти, чипсета) необходимо обеспечить стабильность питания, подаваемого на плату, а также преобразовать подаваемые номиналы в необходимые на данном компоненте платы.
Применение VRM
VRM разработан для того, чтобы существующие системные платы могли поддерживать несколько типов процессоров, а также те, которые появятся в будущем. Ведь каждый процессор имеет свое напряжение питания. При установке процессора в материнскую плату по соответствующим контактам VID (4 или 6 штук) тот определяет модель установленного процессора и подает на его кристалл (ядро) соответствующее напряжение питания. Фактически, комбинация 0 и 1 на выводах VID задает 4 или 6-битный код, по которому VRM «узнает» о модели процессора.
Для примера рассмотрим питание ядер процессоров модели Intel Core 2 Extreme (Conroe, техпроцесс, 65 нм, частота 2,93 ГГц, 4 Мбайт L2).
Для этого процессора значение VID находится в диапазоне 0,85–1,36525 В, максимальный ток для верхней модели E6800 может достигать величины 90 А, для остальных, представленных моделями E6300, Е6400, Е6600, Е6700, — 75 А. VRM для процессоров Intel Core 2 Duo должен удовлетворять спецификации 11.0.
Существует два типа регуляторов: линейный и импульсный. Применявшийся в более старых платах линейный регулятор напряжения представлял собой микросхему, понижающую напряжение за счет рассеяния его избытка в виде тепла. С уменьшением требуемого напряжения росла тепловая мощность, рассеиваемая такими регуляторами, поэтому они снабжались массивными радиаторами, по которым их легко было найти на материнской плате. При установке в материнскую плату процессора, потребляющего большую мощность, регулятор (а с ним и материнская плата) мог выйти из строя из-за перегрева. Поэтому в современных материнских платах применяется импульсный регулятор, содержащий сглаживающий фильтр низких частот, на который подается последовательность коротких импульсов полного напряжения.
Импульсный стабилизатор содержит реактивно-индуктивный LC-фильтр, на который короткими импульсами подается полное напряжение питания, и за счет инерции емкости и индуктивности выравнивается до требуемой величины, причем бесполезных потерь энергии практически не происходит. Стабильность напряжения поддерживается путем управления частотой и шириной импульсов (широтно-импульсная модуляция, ШИМ). При широтно-импульсной модуляции в качестве несущего колебания используется периодическая последовательность прямоугольных импульсов, а информационным параметром, связанным с дискретным модулирующим сигналом, является длительность этих импульсов. Периодическая последовательность прямоугольных импульсов одинаковой длительности имеет постоянную составляющую, обратно пропорциональную скважности импульсов, то есть прямо пропорциональную их длительности. Пропустив импульсы через ФНЧ с частотой среза, значительно меньшей, чем частота следования импульсов, эту постоянную составляющую можно легко выделить, получив стабильное постоянное напряжение.
Применение импульсных стабилизаторов позволяет значительно сократить тепловыделение, однако создает дополнительный источник помех, который может влиять на работу видео- и звуковых адаптеров.
За счет инерционности фильтра импульсы сглаживаются в требуемое постоянное напряжение. КПД такого преобразователя весьма высок, поэтому паразитного нагрева почти не происходит. Узнать импульсный регулятор напряжения на плате можно по катушкам индуктивности. Во всех новых платах применяется многоканальный (многофазный) преобразователь напряжения, который понижает напряжение питания до необходимых 0,8—1,7 В на ядре процессора (в зависимости от модели).
Трехканальный VRM на плате K8NS (Socket-939)
Таким образом, VRM – это по сути ШИМ-регулятор на микросхеме с преобразователями на MOSFET и фильтром. Как правило, напряжение на системной плате выше, чем на ядре процессора.
Традиционно основные регуляторы напряжения расположены вокруг процессорного разъема. Учитывая высокие значения потребляемых токов, они создаются многоканальными (многофазными). Обычно их число три-четыре, но на топовых платах их число может достигать 8. Отказ от одноканального питания снижает нагрузку на регулирующие транзисторы. С целью улучшения температурных режимов их работы, а также повышения надежности, силовые транзисторы нередко снабжаются средствами охлаждения (радиаторами).
В дополнение к многоканальному VRM, индивидуальными системами энергопитания снабжены цепи видеоадаптера и модулей оперативной памяти. Они обеспечивают необходимые уровни напряжений и токов, а также снижают взаимное влияние, передаваемое по силовым шинам.
Большое количество вентиляторов, сосредоточенных в небольшом объеме, создает сравнительно высокий уровень акустического шума. Уменьшить его можно специальным дизайном материнских плат, предусматривающим использование решений на основе тепловых трубок (heat pipe).
В качестве примера можно привести плату Gigabyte GA-965P-DQ6. На ней радиаторы, установленные на обеих микросхемах чипсета, соединены несколькими тепловыми трубками с радиаторами, установленными на силовых транзисторах VRM.
Такое решение обеспечивает эффективное перераспределение тепловых потоков между несколькими радиаторами. В результате выравниваются температуры элементов, работающих в ключевых режимах, являющихся источниками неравномерного нагрева, как в пространстве, так и во времени. Охлаждению же всей конструкции способствует общий дизайн, предусматривающий использование воздушных потоков, порождаемых вентиляторами процессора и кулера.
Оценивая эффективность данного решения, необходимо отметить, что еще одним фактором, способствующим уменьшению тепловой и электрической нагрузок на транзисторы VRM, является реализация большого количества каналов (фаз) питания. Например, в архитектуре указанной платы их двенадцать. Столь большое количество каналов существенно упрощает конструкцию VRM, улучшает развязку по линиям питания, уменьшает электрические помехи и увеличивает устойчивость работы компьютерных подсистем. Кроме того, описанная конструкция с пассивными кулерами, аналог которой активно используется, кстати, в бесшумных моделях видеоадаптеров этого же производителя, уменьшает акустический шум и от материнской платы.
Конструкция регулятора напряжения позволяет подавать на него 5 или 12 В (на выходе – напряжение питания процессора). В системе в основном используется напряжение 5 В, но многие компоненты в настоящее время переходят на 12 В, что связано с их энергопотреблением. Кроме того, напряжение 12 В используется, как правило, приводным электродвигателем, а все другие устройства потребляют напряжение 5 В. Величина напряжения, потребляемого VRM (5 или 12 В), зависит от параметров используемой системной платы или конструкции регулятора. Современные интегральные схемы регуляторов напряжения предназначены для работы при входном напряжении от 4 до 36 В, поэтому их конфигурация всецело зависит от разработчика системной платы.
Как правило, в системных платах, предназначенных для процессоров Pentium III и Athlon/Duron, использовались 5-вольтные регуляторы напряжения. В последние годы возникла тенденция к переходу на регуляторы, потребляющие напряжение 12 В. Это связано с тем, что использование более высокого напряжения позволяет значительно уменьшить текущую нагрузку. Например, если использовать тот же 65-ваттный процессор AMD Athlon с рабочей частотой 1 ГГц, можно получить несколько уровней нагрузки при различных величинах потребляемого напряжения
При использовании напряжения 12 В сила потребляемого тока достигает только 5,4 А или, с учетом 75% эффективности регулятора напряжения, 7,2 А. Таким образом, модификация схемы VRM системной платы, позволяющая использовать напряжение 12 В, представляется достаточно простой. К сожалению, стандартный блок питания ATX 2.03 содержит в основном силовом разъеме только один вывод +12 В. Дополнительный разъем вообще не содержит выводов +12 В, поэтому толку от него немного. Подача тока силой 8 А и более на системную плату, осуществляемая при напряжении +12 В через стандартный провод, может привести к повреждению разъема.
Для повышения энергообеспечения системных плат в Intel была создана новая спецификация блоков питания ATX12V. Результатом этого стал новый силовой разъем, предназначенный для подачи дополнительного напряжения +12 В на системную плату.
В плате ASUS P5B-E Plus, основанной на чипсете Intel P965 Express, VRM используется 4-канальный, а значит, более приспособленный к надежной поддержке мощных (или сильно разогнанных) процессоров. Дизайном предусмотрено охлаждение половины из ключевых транзисторов, но на данной модели радиатор не установлен. Разъем подачи питания на VRM сделан 8-контактным, чтобы уменьшить вдвое ток, проходящий по линиям +12 В. Впрочем, если у вашего блока питания нет такого разъема, можно подключить плату и через 4-контактный разъем.
Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти и видеоадаптера – чаще всего другими. Это обеспечивает необходимые уровни напряжений и токов, отсутствие просадок по питанию, а также снижает взаимное влияние, передаваемое по силовым шинам.
Схемотехника стабилизаторов питания
Практически все современные стабилизаторы строятся на базе того или иного интегрированного ШИМ-контроллера (PWM) — довольно сложной микросхемы с кучей выводов по краям. Одна группа выводов «заведует» выходным напряжением, которое выбирается комбинацией логических «1» и «0», подаваемых на эти ноги. В зависимости от конструктивной реализации эти выводы могут либо сразу идти на перемычки или быть мультиплексированы еще с чем-то другим.
Пару слов о ключевых элементах. Стабилизатор может быть собран либо на двух n-канальных МОП-транзисторах, в этом случае сток (drain) одного транзистора соединен в точке выхода (Vout) с истоком (source) другого. Оставшийся исток идет на массу, а сток — на стабилизируемое напряжение. Это облегчает поиск делителей на неизвестных микросхемах. Находим два мощных транзистора, смотрим — где они соединяются (там еще дроссель будет) и ищем резистор, ведущий к той же точке. Если с другим концом резистора соединен резистор, идущий на массу — делитель найден!
Большинство схем построено именно по такому принципу, однако вместо второго транзистора может использоваться и диод. Внешне он похож на транзистор, только на нем (как правило) написано MOSPEC, а два крайних вывода замкнуты накоротко. Такая схема проще в исполнении, содержит меньше деталей, однако за счет падения на прядения на n-p переходе (
0,6 В) снижается КПД и увеличивается рассеиваемая тепловая мощность, то есть, попросту говоря, нагрев.
В одних случаях каждый узел питается своим собственным стабилизатором (и вся плата тогда в стабилизаторах), в других — производители путем хитроумных извращений запитывают несколько узлов от одного стабилизатора. В частности, на ASUS P5AD2/P5GD2 один и тот же стабилизатор питает и северный мост, и память, используя кремниевый диод для зарядки обвязывающего конденсатора до нужного напряжения. Поэтому напряжение на выходе стабилизатора будет отличаться от напряжения на чипсете. Увеличивая напряжение на памяти, мы неизбежно увеличиваем напряжение и чипсете, спалить который гораздо страшнее, да и греется он сильно.
Стабилизатор может собираться и на операционном усилителе, и на преобразователе постоянного тока или даже на микроконтроллере. Усилители/преобразователи обычно имеют прямоугольный корпус и небольшое количество ног (порядка 8), а рядом с ними расположены электролитические конденсаторы, дроссели и мощные ключевые транзисторы, иногда подключаемые к микросхеме напрямую, иногда — через дополнительный крохотный транзистор. Микроконтроллеры — это такие небольшие микросхемы в прямоугольном корпусе с кучей ног (от 16 и больше), рядом с которым торчат конденсаторы/дроссели/транзисторы (впрочем, на дешевых платах дроссели часто выкидывают, а количество конденсаторов сводят к минимуму, оставляя в нераспаянных элементах букву L).
Как выделить стабилизаторы среди прочих микросхем? Проще всего действовать так: выписываем маркировку всех мелких тараканов и лезем в сеть за datasheet’ами, в которых указывается их назначение и, как правило, типовая схема включения, на которой где-то должен быть делитель, подключенный к одному из выводов. Делитель — это два резистора, один из которых всегда подключен к выходу стабилизатора (Vout), а другой — к массе (GROUND или, сокращенно, GND). Выход найти легко, во-первых — вольтметром, во-вторых — чаще всего он расположен в точке соединения двух ключевых транзисторов от которой отходит дроссель (если он есть).
Изменяя сопротивление резисторов делителя, мы пропорционально изменяем и выходное напряжение стабилизатора. Уменьшение сопротивление резистора, подключенного в массе, вызывает увеличение выходного напряжения и наоборот. «Выходной» резистор при уменьшении своего сопротивления уменьшает выходное напряжение.
Современные мощные ключевые транзисторы IGBT, MOSFET имеют довольно высокую емкость затвора (>100 пФ) которая не позволяет «быстро» (десятки кГц) переключать ключевой транзистор. Поэтому для быстрого заряда/разряда емкости затвора применяются спец. схемы или готовые ИМС, называемые «драйверами» которые обеспечивают быстрый перезаряд емкости затвора. В нашем случае, драйвером могут быть как сами микросхемы ШИМ-контроллеров, так и внешние каскады — внешние драйверы (обычно в многофазных преобразователях). Формально любой управляющий (например, предоконечный) каскад может быть драйвером.
Микросхема VRM на платах Gigabyte
На картинке выше представлен новый подход с исполнению ШИМ: вместо 3 микросхем — драйвера и двух мосфетов используется одна интегральная микросхема, включающая в себя все эти компоненты. Такие микросхемы с некоторых пор стали использоваться на дорогих платах Gigabyte и других ведущих производителей.
Именно в этой спецификации приведены все основные типовые сигналы для такой микросхемы:
Basic Input-Output Signal Definition for a typical DrMOS
Микросхемы памяти в зависимости от своих конструктивных особенностей могут требовать большего или меньшего количества питающих напряжений. Как минимум, необходимо запитать ядро — VDD. Вслед за ним идут входные буфера VDDQ, напряжение питания которых не должно превышать напряжения ядра и обычно равно ему. Термирующие (VTT) и референсные (Vref) напряжения равны половине VDDQ. (Некоторые микросхемы имеют встроенные термирующие цепи и подавать на них VTT не нужно).
Теперь посмотрим на двухфазную схему питания DrMOS на примере платы MSI:
Применяемые микросхемы
Рассмотрим старую добрую ASUS P4800-E на базе чипсета i865PE. Внимательно рассматривая плату, выделяем все микросхемы с не очень большим количеством ног. Возле северного моста мы видим кварц, а рядом с ним — серый прямоугольник ICS CA332435. Это — клокер, то есть тактовый генератор. Процессор, как обычно, окружен кучей конденсаторов, дросселей и других элементов, выдающих близость стабилизатора питания. Остается только найти ШИМ-контроллер, управляющий стабилизатором. Маленькая микросхема с надписью ADP3180 фирмы Analog Devices. Согласно спецификации (http://www.digchip.com/datasheets/download_datasheet.php?id=121932&part-number=ADP3180) это 6-битный программируемый 2-, 3-, 4-фазный контроллер, разработанный специально для питания Pentium-4. Процессор Pentium 4 жрет слишком большой ток и для поддержания напряжения в норме основному контроллеру требуется три вспомогательных стабилизатора ADP3418. Китайцы славятся своим мастерством собирать устройства с минимумом запчастей, но наш ASUS не принадлежит к числу пройдох и все детали присутствуют на плате — такие маленькие квадратные микросхемы, затерявшиеся среди дросселей и ключевых транзисторов.
Комбинация логических уровней на первых четырех ногах основного контроллера задает выходное напряжение (грубо), точная подстройка которого осуществляется резистором, подключенным к 9 выводу (FB). Чем меньше сопротивление — тем ниже напряжение и наоборот. Следовательно, мы должны выпаять резистор с платы и включить в разрыв цепи дополнительный резистор. Тогда мы сможем не только повысить напряжение сверх предельно допустимого, но и плавно его изменять, что очень хорошо!
Материнская плата ASUS P5K-E/WiFi-AP оснащена 8-фазным стабилизатором питания, собранным на дросселях с ферромагнитным сердечником и транзисторах MOSFET NIKOS P0903BDG (25 В, 9,5 мОм, 50 А) и SSM85T03GH (30 В; 6 мОм; 75 А). Четыре канала стабилизатора питания накрыты радиатором, который по большому счету служит для охлаждения северного моста, от которого тепло передается по тепловой трубке.
У ASUS фирменная микросхема управления питанием называется EPU (Energy Processing Unit):
Контроллер EPU на платах ASUS
Из картинки выше понятно, что микросхема EPU не только генерирует правильное напряжение питания ядра процессора Vcore согласно сигналам VID, но также и общается с чипсетом по шине SM Bus, позволяя через управляющие сигналы такового генератора задавать частоту процессора согласно текущему профилю энергопотребления.
А вот фотография уникальной платы Gigabyte с 10-канальный VRM, который они называли фирменным термином PowerMOS! В нем используется микросхемы фирмы International Rectifier (IR) IR3550, каждая из которых в себя включает мощный синхронный драйвер затвора, упакованный в одном корпусе с управляющим MOSFET и синхронным MOSFET с диодом Шоттки. Максимальный ток — 60 А. Эта микросхема походит как для управления питанием мощных CPU, так и GPU, и многоканальных контроллеров памяти. Эта микросхема, как и аналогичные удовлетворяет спецификации Intel DrMOS V4.0.
Типовая схема включения IR3550 выглядит следующим образом:
Сигналы микросхемы IR3550
Типовая схема включения IR3550
Из картинки поднятно, что напряжение питания самой микросхемы Vcc от 4,5 до 7 V (подается с шины 5V), а выходнйо каскад — Vout.
DrMOS также поддерживается компаниями MSI, Asrock и некоторыми другими. Более бюджетные производители по прежнему используют стандартный дизайн — отдельная микросхема ШИМ-контроллера и набор силовых мосфетов. Например, на свежей плате ECS X79R-AX на чипсете Intel X79 Express используется VRM-контроллер Intersil ISL6366 для управления 6+1 фазным питанием:
VRM контроллер ISL6366
Из документации микросхема ISL6366 подддерживает стандарт Intel VR12/IMVP7 и имеет два выхода: одна на 6 фаз питания ядра или памяти, второй — на одну дополнительную фазу питания графики, микросхем мониторинга и отдельно линий I/O процессора. Более того, она имеет встроенные функции термомониторинга и термокмопенсации. Также микросхема непрерывно мониторит выходной ток через отдельный резистор и подстраивает напряжение питания. Сама микросхема используется в паре с драйверами ISL6627, подключаемыми к транзисторам:
Typical Application: 6-Phase Coupled-Inductor VR and 1-Phase VR
6+1 фаз питания платы ECS
По фото видно, что транзисторы здесь тоже упакованы в микросхемы, поэтому занимают очень мало место.
На данный момент выпускают 33 модели микросхем, поддерживающие спецификацию VRM 10.1 и только 5 микросхем с поддержкой стандарта VRM 11.0.:
Как видно, многие, но далеко не все из этих микросхем импульсных регуляторов имеют 4 фазы стабилизации.
Питание памяти
В окрестностях DIMM-слот быстро обнаруживается несколько ключевых транзисторов, электролитических конденсатора и всего одна микросхема с маркировкой LM 358. Такую микросхему производят все кому только не лень: Fairchild Semiconductor, Philips, ST Microelectronics, Texas Instruments, National Semiconductor и другие.
Это типичный операционный усилитель, причем — двойной. Распиновка приведена на здесь, а схема типового включения — тут, из которой все становится ясно и типовая схема включения уже не нужна. Нужный нам резистор подключен к выходу операционного усилителя (ноги 1 и 7). Да не введет нас в заблуждение делитель на отрицательном входе. Он не имеет обратной связи по стабилизируемому напряжению и потому нас не интересует.
Смотрим на плату — 7-я нога зашунтирована через конденсатор и дальше никуда не идет, а вот за 1-й тянется дорожка печатного проводника. Значит, это и есть тот вывод, который нам нужен! Чтобы увеличить напряжение на памяти, необходимо включить в разрыв между 1-й ногой и резистором RF дополнительный резистор. Чем больше его сопротивление — тем выше выходное напряжение. Как вариант, можно подпаять между 2-й и 4-й ногами свой резистор (4-я нога — масса), чем меньше его сопротивление — тем выше напряжение и ничего разрывать не придется.
Для контроля напряжения можно использовать либо встроенную систему мониторинга напряжения (если она есть), либо мультиметр. Мультиметр надежнее и ему больше веры, встроенный мониторинг — удобнее, тем более что контролировать напряжение после вольтмода приходится постоянно. На холостых оборотах оно одно, под нагрузкой — другое. Весь вопрос в том, куда его подключать? Один из контактов — на массу, другой — на точку соединения двух ключевых транзисторов или транзистора с диодом. Если найти точку соединения не удалось (ничего смешного здесь нет — на вставленной в компьютер печатной плате разводку разглядеть довольно проблематично), можно подключаться к стоку каждого из транзисторов. У одного из них он идет к входному напряжению, у другого — к уже стабилизированному. Сток обычно расположен посередине и «продублирован» на корпус. Внешне он выглядит как «обрезанный» вывод. Соответственно, в схеме «транзистор плюс диод» сток всегда подключен к входному напряжению и тогда нам нужен исток — крайний правый вывод (если смотреть на транзистор в положении «ноги вниз»). Втыкаем сюда щуп вольтметра, медленно вращаем построечный резистор и смотрим. Если напряжение не меняется, значит мы подключили резистор не туда и все необходимо тщательно перепроверить.
Генераторы тактовой частоты
Обычно производители оставляют довольно солидный запас, и материнская плата сваливается в глюки задолго до его исчерпания, однако в некоторых случаях наши возможности очень даже ограничены. Некоторые платы не гонятся вообще! Что тогда? Тактовый генератор (он же «клокер») может быть собран на разных микросхемах (обычно это ICS или RTM), которые можно программировать путем перебора комбинацией логических «0» и «1» на специальных выводах. Внешне это прямоугольная ИМС в корпусе SOP с кол-вом пинов от 20 до 56 в районе кварца. Таблицу частот можно найти в datasheet’е на микросхему. В древние времена, когда конфигурирование осуществлялось через перемычки, производителю было очень сложно «заблокировать» верхние частоты, но при настройке через BIOS setup — это легко! Придется пойти на довольно рискованный и радикальный шаг — отрезаем «комбинаторную» группу выводов от печатной платы и напаиваем на них jumper’ы с резисторами, схему соединения которых можно взять из того же datasheet’а. И тогда все будет в наших руках! Естественно, настраивать частоту через BIOS уже не удастся.
Микросхема тактового генератора ICS и кварца 14,318 МГц
А вот другой путь — замена кварца. В большинстве материнских плат стоит кварц, рассчитанный на частоту 14,318 МГц, если его заменить на более быстрый, то все частоты пропорционально подскочат, однако при этом, возможно, начнется полный глюкодром. Вообще говоря, замена кварца — неисследованная область, еще ждущая своих энтузиастов.
Клокеров на плате несколько — каждый отвечает за генерацию своего диапазона частот — один на процессор, другие на периферийные шины, GPU. Еще больше на плате кварцев — отдельный, например, стоит рядом с микросхемой сетевой карты и генерирует тактирование для передаче по локальной сети.
Кварц сетевой карты Realtek
Кварц контроллера USB 3.0
Выводы
Применяемые в большинстве системных плат алюминиевые электролитические конденсаторы емкостью 1200 мкФ, 16 В или 1500 мкФ, 6,3 и 10 В обладают рядом недостатков, один из которых это высыхание по истечении времени. Следствием этого является потеря ими емкости, выход компонента из строя, появление аппаратных ошибок в цепях. Риск увеличивается при использовании подобных конденсаторов в тяжелых температурных условиях, например, в корпусе системного блока компьютера температура может доходить до 50-60° С.
Танталовые конденсаторы обладают большей надежностью, чем электролитические (нет эффекта высыхания), они более компактны и имеют меньшее значение параметра ESR, увеличивающее эффективность их применения в цепях фильтрации источников питания.
В последнее время вместо часто вздувающихся электролитических конденсаторов именитые производители плат стали использовать твердотельные конденсаторы. В схемах питания новой платы ASUS M3A79-T DELUXE на чипсете AMD 790FX используются высококачественные детали, в частности, транзисторы с низким сопротивлением в открытом состоянии ( RDS ( on )) для уменьшения потерь при переключении и снижения тепловыделения, дроссели с ферритовыми сердечниками, и, что очень важно, твердотельные полимерные конденсаторы от ведущих японских производителей (гарантийный срок службы модуля VRM – 5000 часов). Благодаря применению таких компонентов достигается максимальная эффективность энергопотребления, низкое тепловыделение и высокая стабильность работы системы. Это позволяет получить высокие результаты разгона и увеличить срок эксплуатации оборудования.
Твердотельные конденсаторы на плате MSI 880GMA-E45
Такие же элементы используются например в материнской плате Gigabyte GA-P35T на чипсете P 35. Правда, и твердотельные конденсаторы взрываются, как правильно, в следствие повышенного напряжения или просто некачественных элементов (да, такое тоже встречается!):
Взорвавшиеся конденсаторы
VRM на обычных электролитических конденсаторах имеет MTBF всего около 3000 часов.
По возможности необходимо выбирать те материнские платы, которые используются 4-фазный импульсный регулятор. В цепях фильтра VRM предпочтительно должны стоять твердотельные, а не алюминиевые электролитические конденсаторы, дроссели должны иметь ферритовый сердечник. Кроме того, на грамотно спроектированной плате, конденсаторы фильтра не должны стоять вплотную к кулеру процессора и к дросселям, чтобы не происходило их перегрева.
В идеальном варианте, необходимо выбирать те платы, которые имеют отдельный независимый регулятор напряжения для CPU, памяти и шины видеокарты. В этом случае, вы сможете отдельно регулировать напряжение на каждом из компонентов, не вызывая роста напряжения на других!