Две окружности пересекаются в точках A и B. Их общая касательная (та, которая ближе к точке B) касается окружностей в точках E и F. Прямая AB пересекает прямую EF в точке M. На продолжении AM за точку M выбрана точка K так, что KM = MA. Прямая KE вторично пересекает окружность, содержащую точку E, в точке C. Прямая KF вторично пересекает окружность, содержащую точку F, в точке D. Докажите, что точки C, D и A лежат на одной прямой.
Решение
ME² = MB·MA = MF², то есть ME = MF. Далее можно рассуждать по-разному.
Первый способ. Диагонали четырёхугольника AEKF делят друг друга пополам, то есть AEKF – параллелограмм. ∠CAE = ∠FEK (оба они равны углу между хордой CE и касательной FE). Аналогично ∠DAF = ∠EFK. Поэтому сумма трёх углов с вершиной A равна сумме углов треугольника EFK, то есть 180°. Значит, точки C, D и A лежат на одной прямой.
Второй способ. ME·MF = MB·MA = MB·MK, следовательно, четырёхугольник BEKF – вписанный. Кроме того, KE·KC = KB·KA = KF·KD, поэтому точки E, B, F переходят в C, A, D при инверсии с центром K и радиусом А инверсия переводит окружность BEKF, проходящую через её центр, в прямую.
Две окружности касаются внешним образом в точке C. Прямая касается меньшей окружности в точке A, а большей — в точке B, отличной от A. Прямая AC вторично пересекает большую окружность в точке D, прямая BC вторично пересекает меньшую окружность в точке E.
а) Докажите, что прямая AE параллельна прямой BD.
б) Пусть L — отличная от D точка пересечения отрезка DE с большей окружностью. Найдите EL, если радиусы окружностей равны 2 и 5.
а) Пусть общая касательная к данным окружностям, проведённая через точку C, пересекает общую касательную AB в точке M. Тогда то есть медиана CM треугольника ABC равна половине стороны AB. Значит, Тогда поэтому AE — диаметр меньшей окружности. Следовательно, прямая AE перпендикулярна прямой AB. Аналогично докажем, что прямая BD перпендикулярна прямой AB. Прямые AE и BD перпендикулярны одной и той же прямой AB, значит, они параллельны.
б) Пусть радиусы окружностей равны r и R, где r
Опустим перпендикуляр EF из точки E на BD. Тогда
Отрезок AC — высота прямоугольного треугольника ABE, проведённая из вершины прямого угла, а EB и ED — секущие к большей окружности, проведённые из одной точки, поэтому
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H. Отрезок AP — диаметр окружности, описанной около треугольника ABC.
а) Докажите, что прямая HP пересекает отрезок BC в его середине.
б) Луч PH вторично пересекает окружность, описанную около треугольника ABC, в точке M. Найдите длину отрезка MC1, если расстояние от центра этой окружности до прямой BC равно 4, ∠BPH = 120°.
б) Пусть K — середина BC, O — центр окружности (см. рис. справа). Треугольник OBC равнобедренный с основанием BC, поэтому OK — его высота. Отрезок OK — средняя линия треугольника AHP, а значит, AH = 2OK = 8. Четырехугольник AC1HM вписан в окружность с диаметром AH, тогда
Применим теорему синусов:
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Точка O — центр вписанной в треугольник ABC окружности. Прямая OB вторично пересекает описанную около этого треугольника окружность в точке P.
а) Докажите, что
б) Найдите площадь треугольника APC, если радиус описанной около треугольника ABC окружности равен 4, а
а) Пусть — центр вписанной окружности, следовательно, и − биссектрисы. Обозначим углы : Тогда и (опираются на одну дугу). Имеем: Но также как внешний угол. Откуда следует требуемое равенство:
По теореме синусов, Следовательно, искомая площадь
Ответ: б)
Примечание Дмитрия Гущина.
Ученик, занимавшийся в математическом кружке, или посещавший факультатив, узнает в задаче стандартную конструкцию. Напомним (см. Лемму о трезубце):
1. Биссектриса угла треугольника делит пополам угол между радиусом описанной окружности и высотой, проведённой из вершины того же угла.
2. Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром к противоположной стороне лежит на описанной окружности данного треугольника. Эта точка равноудалена от центра вписанной окружности, а также двух вершин треугольника и центра вневписанной окружности, противолежащих данному углу треугольника.
В нашем случае эта точка — точка Р, тогда треугольник OPC равнобедренный, что сразу же доказывает пункт а). Пункт б): треугольник APC равнобедренный, а поскольку угол Р в нем равен 60°, то и равносторонний.
Ещё несколько задач на этот сюжет можно посмотреть здесь.
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.
Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2
Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.
Квадрат касательной равен произведению секущей на ее внешнюю часть
Дугой называется часть окружности, заключенная между двумя точками.
Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.
Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.
Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности. Внутренние углы, опирающиеся на одну и ту же дугу, равны.
Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.
Периметр сектора: P = s + 2R.
Площадь сектора: S = Rs/2 = ПR 2 а/360°.
Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.