Вязкость масла сст что это
Вязкость моторных масел
Вязкость моторного масла влияет на множество аспектов: количество отводимой от узла трения теплоты, износ вкладышей подшипников и шеек коленвала, способность обеспечивать гидродинамическое трение.
Один из способов понять, что такое вязкость — представить, что вы пытаетесь плыть. Если жидкость слишком густая, вам сложно двигаться и приходится тратить много энергии. И наоборот, если субстанция слишком жидкая, то вы будете опускаться на дно. Поэтому важен правильный баланс. Масло должно быть достаточно густым, чтобы выдерживать разделение движущихся частей, но достаточно тонким, чтобы обеспечивать топливную экономичность.
Молекулы жидких тел при перемещении вызывают трение. Это трение и называется вязкостью. При повышении давления, уменьшается объем и усиливается взаимное притяжение молекул и увеличивается сопротивление течению, вязкость масла увеличивается. При повышении температуры процесс прямо противоположный — вязкость уменьшается.
Работа, затрачиваемая на перемещение молекул, рассеивается в виде тепла. Если масляная пленка толще зазора, увеличивается сила трения, что приводит к повышению температуры и снижению КПД. Поэтому автопроизводители рассчитывают зазоры под рабочие температуры двигателя, специально заставляя его работать под повышенными нагрузками при прогреве.
Различают кинематическую и динамическую вязкость.
Кинематическая вязкость моторного масла
В отчете ASTM 1989 года сообщается, что стремительный рост неньютоновских всесезонных масел сделал кинематическую вязкость практически бесполезным параметром для определения реальной вязкости в критически важных зонах двигателя. Поэтому был разработан параметр HTHS, о котором мы расскажем далее.
Индекс вязкости
Индекс вязкости моторного масла (ИВ, Viscosity index, VI) — это показатель, характеризующий степень изменения вязкости в зависимости от температуры °C. Чем выше индекс вязкости, тем в более широком температурном диапазоне смазочный материал способен сохранять рабочие свойства. Наибольшим индексом вязкости обладают базовые масла III (VHVI — Very High Viscosity Index, очень высокий индекс вязкости), IV (PAO — ПАО, полиальфаолефины) и V групп.
Индекс вязкости определяется по методу ASTM D2270. Для расчета необходимы показатели кинематической вязкости при 40°C и 100°C.
Динамическая вязкость
Создание полимерных загустителей позволило производить универсальные всесезонные масла, которые способны обеспечивать уверенный пуск двигателя при отрицательных температурах и сохранять рабочие параметры при высоких. Принцип их действия достаточно прост: при низких температурах они сжимаются, занимая меньше места и снижая вязкость, а при повышении температуры, наоборот, увеличиваются в размерах, увеличивая вязкость.
Однако, у полимеров есть одна интересная особенность. При высокой скорости сдвига полимеры выстраиваются в направлении потока и сжимаются (например, в очень маленьких зазорах, где толщина масляной пленки предельно мала, но скорость движения очень высокая), что приводит к потере вязкости. Она может быть как кратковременной (при снижении скорости сдвига полимер восстановится), так и необратимой (полимер разрушается).
Для определения стойкости полимера к деструкции используется тест Курта Орбана (ASTM D 6278), при котором загущенное масло прокачивается топливным насосом высокого давления под давлением 175 бар. Масла для легковых автомобилей должны выдерживать 30 циклов такого испытания, а для коммерческих — 90. Вязкость после теста должна оставаться в рамках стандарта SAE J300.
В уже упомянутом отчете ASTM 1989 года говорится, что стандарт SAE J300 не совершенен и 12-летние усилия по разработке нового стандарта ни к чему не привели. Однако зафиксированных случаев поломок, связанных с недостаточной вязкостью HTHS, выявлено не было, поэтому редакция SAE J300 и по сей день является актуальной.
Бытует миф, что моторные масла с низким HTHS приводят к ускоренному износу двигателя. Низковязкие масла предназначены только для специально сконструированных двигателей с минимальными зазорами. Кроме того, высокое содержание модификаторов трения позволяет защищать двигатель даже в условиях граничного трения.
Наиболее вредны масла с низким HTHS для изношенных двигателей. Дело в том, что абразивные частицы, которые, как правило, присутствуют в неновом двигателе, могут привести к тому, что тонкая масляная плёнка разрывается и начинается незащищённое трение, которое потом приводит к очень быстрому выходу деталей из строя. Слишком большие зазоры и неоптимальный режим работы топливной системы, работа мотора на малых оборотах и в режиме прогрева, приводят к тому, что топливо попадает в масло, снижая и без того малую вязкость и ухудшая его смазочные свойства.
Параметр динамической вязкости, определяемый на имитаторе холодного пуска (Cold Cranking Simulator) по методу ASTM D 2983. Иногда его еще называют вязкость проворачивания. Он показывает, насколько двигателю будет трудно провернуть холодное масло в цилиндро-поршневой группе.
Вязкость прокачивания (pumping viscosity), определяемая на мини-ротационном вискозиметре по методу ASTM D 4684, говорит нам о способности масла течь и создавать необходимое давление в системе смазки в начальной стадии работы холодного двигателя. При испытании определяется либо напряжение сдвига, необходимое для разрушения желе, либо вязкость при отсутствии напряжения сдвига. Прокачивание обеспечивается только для масел с вязкостью не более 60 000 mPa s. Наименьшая температура, при которой масло может прокачиваться, называется нижней температурой прокачивания, ее значение близко к наименьшей температуре эксплуатации. Тест проводится при температуре на 5 градусов ниже, чем CCS
Стандарт SAE J300
Классификация моторных масел по SAE признана во всем мире. По ней все масла делятся на:
Вопросы и ответы
Как определить вязкость моторного масла?
Можно ли смешивать моторные масла разной вязкости?
Можно, но только в экстренных случаях. Не имея специального оборудования, сложно понять, какой вязкости в итоге получится микс смазочных материалов. Но такой микс все равно лучше, чем отсутствие масла в двигателе.
Вязкость моторного масла
Главная задача моторного масла – не допустить сухого трения движущихся деталей двигателя (заменить его гидродинамическим, т.е. жидкостным), а также обеспечить минимальную силу трения при максимальной герметичности рабочих цилиндров. Молекулы жидких тел при перемещении также вызывают трение, это сопротивление перемещению одной части жидкости относительно другой и называется вязкостью.
Вязкость масла является показателем смазывающих свойств, так как именно от вязкости масла зависит качество смазывания, распределение масла на парах трения и, тем самым, износ деталей. Кроме того, от вязкости зависят потери энергии при работе двигателя.
На определение вязкости моторного масла влияют два основных фактора — температура и скорость сдвига. Чистое базовое масло является т.н. ньютоновской жидкостью, т.е. его параметры линейно зависимы — при определенной температуре и давлении оно будет иметь определенную вязкость. Так, при повышении давления, уменьшается объем и усиливается взаимное притяжение молекул и увеличивается сопротивление течению, вязкость масла увеличивается. При повышении температуры процесс прямо противоположный — вязкость уменьшается.
Создать смазочный материал, который способен сохранять весь спектр свойств неизменно в огромном диапазоне температур практически невозможно. При низких температурах масло становится более густым, при высоких, наоборот, более текучим.
Важно понимать, что температура прогретого двигателя нестабильна. Датчик температуры на приборной панели автомобиля показывает температуру антифриза, которая, остается практически неизменной при правильной работе системы охлаждения двигателя. Однако температура моторного масла может достигать 140 – 150 градусов.
Исходя из этого, для каждого отдельно взятого двигателя автопроизводитель определяет компромиссные оптимальные параметры моторного масла и самый главный из них — это вязкость.
При низкой температуре и высоком давлении вязкость масла, например, в зацеплении шестерен, может увеличиться настолько, что масло станет твердой пластичной массой. В трансмиссии это явление оказывает определенное положительное действие, так как масло в пластичном состоянии не вытекает из зазора сопряженных поверхностей и уменьшает влияние ударных нагрузок на детали.
Однако, в современные всесезонные масла, зачастую, добавляют полимерные загустители — модификаторы вязкости. При повышении температуры они расширяются, увеличивая тем самым вязкость, а при снижении — сжимаются, снижая ее.
Быстрое скольжение поверхностей трения вызывает высокую скорость течения масла в узких зазорах и проявляется высокая деформация сдвига, которая вызывает деструкцию молекул полимеров (загустителей), которые входят в состав масла. При высокой скорости сдвига они могут сжиматься, что приводит к снижению вязкости, хотя их основная задача — увеличивать вязкость при высоких температурах. При сравнительно небольшой деформации сдвига, полимерные молекулы только раскручиваются, а после снятия напряжения, со временем, могут восстановить свою конфигурацию и вязкость. Такое снижение вязкости называется временным. Именно из-за этого явления сообщество автомобильных инженеров и ввело параметр HTHS, о котором мы поговорим далее.
Кинематическая вязкость
Кинематическая вязкость — это отношение динамической вязкости к плотности. Этот параметр показывает его текучесть при нормальной и высокой температуре и низкой скорости сдвига. Показатель выражается в сантиСтоксах (1 сСт=1 мм 2 /с).
Для замера показателя используется стеклянный вискозиметр.
Индекс вязкости
Индекс вязкости (ИВ, VI — Viscosity Index) — это величина, которая показывает, как сильно меняется вязкость масла в зависимости от температуры. Чем он выше, тем лучше. Однако нетипично высокий ИВ может свидетельствовать о большом вовлечении полимерного загустителя и невысоком качестве базы.
Невысокий индекс вязкости у минеральных базовых масел (у парафиновых — около 100, нафтеновых — 30-60, а у ароматических он может быть меньше нуля), более высоким ИВ обладают масла III группы, произведенные по технологии гидрокрекинга (от 120). Лидерами являются ПАО, у которых этот показатель может превышать ИВ 130, а у полиалкиленгликолей он может доходить до 150.
Динамическая вязкость
HTHS (High Temperature High Shear) — вязкость при высокой температуре и скорости сдвига
Интересно, что в отчете ASTM 1989 говорится, что 12 лет усилий, приложенных к разработке нового стандарта вязкости при высокой температуре и высокой скорости сдвига, не увенчались успехом. Если взглянуть на таблицу SAE J300, то можно увидеть, что для всесезонных и сезонных масел параметр HTHS разный: для SAE 40 он больше 3,7 мПа*с, а для, SAE 5W-40 он составляет не более 3,5 мПа*с. Однако, от текущих стандартов не отказались, так как рынок смазочных материалов ни одной поломки, связанной с параметром HTHS.
CCS (Cold Cranking Simulator)
Показатель динамической вязкости моторного масла, определяемый на имитаторе запуска холодного двигателя (Cold Cranking Simulator, CCS). Выражается в мПа*с. Чем он меньше, тем легче провернуть масло в цилиндро-поршневой группе.
MRV (Mini Rotation Viscometer)
Низкотемпературная динамическая вязкость, определяемая на миниротационном вискозиметре (Mini Rotary Viscometer). Этот показатель свидетельствует о том, сможет ли маслонасос прокачать загустевшее масло. Измеряется в мПас*с.
Расшифровка маркировки моторных масел: что значат цифры?
Вышеперечисленные параметры (кинематическая вязкость, CCS, MRV и HTHS) используются для классификации моторных масел по стандарту SAE J300. Согласно нему, автомобильные масла делятся на:
Расшифровать надпись можно по этой таблице.
Какую выбрать вязкость масла?
Заливать нужно масло именно той вязкости, которую рекомендует производитель автомобиля. Более густое, чем необходимо (как и менее вязкое) приведет к ускоренному износу деталей двигателя.
Нужно понимать, что автопроизводители рассчитывают зазоры в двигателе именно под рабочие температуры (для большинства моторов 100-150 градусов), специально заставляя двигатель работать при повышенных нагрузках. Именно поэтому более вязкое холодное масло помогает двигателю быстрее прогреться.
Стокс (единица измерения)
Стокс — единица кинематической вязкости, входящая в систему единиц СГС. Названа в честь Дж. Г. Стокса.
Международное обозначение — St. Для обозначения в русском языке используется — Ст.
Один стокс равен кинематической вязкости, при которой динамическая вязкость среды плотностью 1 г/см³ равна 1 пз. Кинематическая вязкость равна отношению динамической вязкости к плотности среды и дает понятие о вязкости среды в определенных условиях — под действием силы тяжести. Это связано с методом измерения вязкости в капиллярном вискозиметре, когда измеряется время вытекания жидкости из калиброванной емкости через отверстие под действием силы тяжести.
В системе СИ единицей измерения вязкости служит м²/с: 1 Ст = см²/с = 10 −4 м²/с. На практике часто применяется в 100 раз меньшая единица — сантистокс (сСт, cSt): 1 сСт = 1 мм²/с = 10 −6 м²/с
Примерные вязкости некоторых веществ
Вещество | Вязкость, сСт | |
---|---|---|
Вода | 1,011 | |
Мазут топочный М-100 | при 80 °C | 118 |
при 100 °C | 50 | |
Дизельное топливо при 20 °C | 3—6 | |
Печное топливо при 20 °C | Ссылки |
Полезное
Смотреть что такое «Стокс (единица измерения)» в других словарях:
Стокс, Джордж Габриель — В Википедии есть статьи о других людях с такой фамилией, см. Стокс. Джордж Габриель Стокс англ. George Gabriel Stokes … Википедия
Стокс, Джордж Габриель — СТОКС Джордж Габриель (1819 1903) английский физик, математик, гидромеханик, профессор (1849). Окончил Кембриджский университет. В 1854 1855 гг. секретарь Лондонского Королевского общества, в 1885 1890 гг. его президент. В 1887 1892 гг. член… … Морской биографический словарь
Градус Энглера — Градус Энглера, градус ВУ внесистемная единица условной вязкости (ВУ) жидкостей, применяемая в технике, особенно в нефтяной и химической промышленности и названная по имени немецкого химика К. О. Энглера. Число градусов Энглера… … Википедия
Закон Дарси — Механика сплошных сред … Википедия
Беспорядочное течение — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия
Турбулентный поток — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия
Турбуленция — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия
Турбулентное течение — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия
Едини́цы физи́ческих величи́н — конкретные физические величины, условно принятые за единицы физических величин. Под физической величиной понимают характеристику физического объекта, общую для множества объектов в качественном отношении (например, длина, масса, мощность) и… … Медицинская энциклопедия
Вязкость — У этого термина существуют и другие значения, см. Вязкость (значения). Эта статья нуждается в дополнительных источниках для улучшения проверяемости. Вы можете помочь … Википедия
ХИМИЯ НЕФТИ
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
Понятие вязкости
Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.
Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.
Переводные множители для расчета динамической [μ] вязкости.
Переводные множители для расчета кинематической [ν] вязкости.
Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).
Перевести вязкость из одной системы в другую можно при помощи номограммы.
В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:
Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).
Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.
Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:
Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t.
Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).
Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.
Зависимость вязкости от температуры
Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).
С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.
Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.
Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:
Дважды логарифмируя это выражение, получаем:
По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.
Существуют различные методы определения индекса вязкости (ИВ).
Для всех масел с ν100 2 /с вязкости (ν, ν1 и ν3) определяют по таблице ГОСТ 25371-97 на основе ν40 и ν100 данного масла. Если масло более вязкое (ν100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.
Значительно проще определять индекс вязкости по номограммам.
Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:
В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.
Зависимость вязкости от давления
Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.
Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:
В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.
Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:
На основе этого уравнения Д.Э.Мапстоном разработана номограмма, при пользовании которой известные величины, например ν0 и Р, соединяют прямой линией и отсчет получают на третьей шкале.
Вязкость смесей
Вязкость газов и нефтяных паров
Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:
Для приближенных расчетов принимаем, что С = 1,22·Ткип. Более точные значения С и m.
Для расчета вязкости индивидуальных углеводородных газов применяется формула:
Вязкость газов, нефтяных паров можно определить по графическим зависимостям:
Вязкость природных газов известной молекулярной массы или относительной плотности (по воздуху) при атмосферном давлении и заданной температуре может быть определена по кривым, представленным на рисунке.
Как видно из рисунка, с повышением относительной плотности и понижением температуры вязкость газа уменьшается.
Вязкость газов мало зависит от давления в области до 5-6 МПа. При более высоких давлениях она растет и при давлении около 100 МПа увеличивается в 2-3 раза по сравнению с вязкостью при атмосферном давлении. Для определения вязкости при повышенных давлениях пользуются эмпирическими графиками.