Выберите то без чего не может существовать электрический ток
Тест по физике на тему: «Электрический ток»
Тест: «Электрический ток»
1. Электрическим током называют
1) движение заряженных частиц
2) направленное движение частиц
3) направленное движение заряженных частиц
4) направленное движение электронов
2. Чтобы в проводнике возник электрический ток, необходимо
1) действие на электроны сил, вызывающих их движение
2) создание в проводнике электрического поля
3) наэлектризовать проводник
3. Каково назначение источника тока?
1) Поддерживать существование в проводнике электрического поля
2) Создавать электрические заряды в проводнике
3) Освобождать электроны в проводнике от связи с атомами
4. Какой процесс происходит во всех источниках тока?
1) Разделение положительно и отрицательно заряженных частиц
2) Создание потоков заряженных частиц
3) Скопление электронов или ионов
5. Полюсы источника тока — это место, где
1) разделяются электрические заряды
2) накапливаются электрические заряды разного знака
3) электрические заряды взаимодействуют
6. Сколько полюсов и какие имеет источник тока?
1) 2; положительный и отрицательный
2) 3; положительный, отрицательный и нейтральный
3) 2; отрицательный и нейтральный
4) 2; положительный и нейтральный
7. Какая энергия необходима для разделения в источнике тока электрических зарядов?
1) Механическая
2) Внутренняя
3) Химическая
4) Любая из перечисленных или другой вид энергии
8. За счет какой энергии происходит разделение заряженных частиц в гальваническом элементе?
1) Механической
2) Внутренней
3) Энергии химических реакций
4) Энергии света
9. Что в гальваническом элементе служит положительным электродом, что — отрицательным?
1) Положительным — угольный стержень, отрицательным — слой смолы
2) Положительным — угольный стержень, отрицательным — цинковый сосуд
3) Положительным — слой смолы, отрицательным — цинковый сосуд
4) Положительным — угольный стержень, отрицательным — клейстер
10. Аккумулятор дает электрический ток только после того, как
1) его согрели в теплом помещении
2) наэлектризовали его электроды
3) его зарядили от другого источника тока
Тест с ответами: “Электрический ток”
1. Что называют электрическим током:
а) направленное движение электронов
б) направленное движение заряженных частиц +
в) направленное движение частиц
2. Что необходимо, чтобы в проводнике возник электрический ток:
а) создание в проводнике электрического поля +
б) действие на электроны сил, вызывающих их движение
в) наэлектризовать проводник
3. Назначение источника тока:
а) создавать электрические заряды в проводнике
б) освобождать электроны в проводнике от связи с атомами
в) поддерживать существование в проводнике электрического поля +
4. Во всех источниках тока происходит этот процесс:
а) разделение положительно и отрицательно заряженных частиц +
б) скопление электронов или ионов
в) создание потоков заряженных частиц
5. Полюсами источника тока называется место, где:
а) электрические заряды взаимодействуют
б) разделяются электрические заряды
в) накапливаются электрические заряды разного знака +
6. Какие полюса и их количество имеет источник тока?
а) 3; положительный, отрицательный и нейтральный
б) 2; положительный и отрицательный +
в) 2; отрицательный и нейтральный
7. Для разделения в источнике тока электрических зарядов необходима такая энергия:
а) химическая
б) механическая
в) внутренняя
г) все ответы верны +
8. В гальваническом элементе разделение заряженных частиц происходит за счёт этой энергии:
а) энергии химических реакций +
б) энергии света
в) внутренней
9. Что в гальваническом элементе служит положительным электродом, а что — отрицательным:
а) положительным — слой смолы, отрицательным — цинковый сосуд
б) положительным — угольный стержень, отрицательным — цинковый сосуд +
в) положительным — угольный стержень, отрицательным — клейстер
10. Аккумулятор дает электрический ток только после того, как:
а) его зарядили от другого источника тока +
б) его согрели в теплом помещении
в) наэлектризовали его электроды
11. За направление электрического тока условно принимают то направление, по которому движутся в проводнике:
а) электроны и отрицательные ионы
б) отрицательные ионы
в) положительные ионы +
12. При протекании электрического тока через растворы солей в растворах выделяются вещества. В этом проявляется:
а) тепловое действие тока
б) химическое действие тока +
в) магнитное действие тока
13. При силе тока 4 А с электрическим сопротивлением 2 Ом, чему равно напряжение на участке цепи:
а) 8 В +
б) 2 В
в) 16 В
14. Если напряжение увеличить в 4 раза, а сопротивление остается неизменным, как изменится сила тока на участке цепи:
а) уменьшится в 4 раза
б) не изменится
в) увеличится в 4 раза +
15. Резисторы с сопротивлением 2 Ом и 3 Ом соединены последовательно. Необходимо выбрать верное утверждение:
а) сила тока в первом резисторе меньше, чем во втором
б) общее сопротивление резисторов больше 3 Ом +
в) общее сопротивление резисторов равно 1,2 Ом
16. Проволоку разрезали пополам и сложили вдвое. Её сопротивление изменится?
а) не изменится
б) увеличится в 4 раза
в) уменьшится в 4 раза +
17. Что необходимо для того чтобы в проводнике возник электрический ток:
а) только создать в нем электрическое поле +
б) только наличие в нем свободных электрических зарядов
в) только иметь потребителя электрической энергии
18. Устройство плавкого предохранителя основано на действии электрического тока:
а) на химическом
б) на тепловом +
в) на магнитном
19. В электрическую цепь включены параллельно друг другу сопротивления 2 Ом и 3 Ом. По меньшему из них течет ток 6 А. По большему – течет ток:
а) 4 А +
б) 2 А
в) 3 А
20. Сила тока измеряется в:
а) Джоулях
б) Омах
в) Амперах +
21. Каким бывает электрический ток:
а) заряженным и незаряженным
б) кратковременным и долговременным +
в) быстрым и медленным
22. В обычных условиях газ:
а) не проводит электрический ток +
б) проводит электрический ток
в) может проводить или не проводить ток в зависимости от вида газа
23. Ток начинает существовать когда:
а) когда молекулы начинают двигаться хаотично
б) появляются свободные заряды +
в) когда молекулы газа начинают сталкиваться друг с другом
24. Какие разряды электрического тока существуют:
а) самостоятельные +
б) ограниченные
в) неограниченные
25. Какой разряд можно назвать самым слабым:
а) тлеющий
б) тихий +
в) искровой
26. Что называется рекомбинацией:
а) аналогичный процесс ионизации
б) происходит одновременно с ионизацией
в) обратный процесс ионизации +
27. В результате чего возникает электрический ток в газах:
а) ионизации +
б) понижения температуры
в) расщепления молекул
28. Какой из разрядов электрического тока применяется в бактерицидных лампах:
а) дуговой
б) искровой
в) тлеющий +
29. Как называются разряды, которые существуют, пока на них действует тело из вне:
а) тлеющие разряды
б) несамостоятельные разряды +
в) самостоятельные разряды
30. Что называется электрическим полем:
а) особый вид материи, проявляющий себя в действии на электрические заряды +
б) вид материи, имеющий электрические заряды
в) особый вид материи, проявляющий себя в действии на движущиеся электрические заряды
Дожили! Учёные открыто говорят, что наука не может объяснить, что такое электричество!
Вот тому наглядный и живой пример:
Игорь Петрович Копылов, доктор технических наук, профессор, заведующий кафедры электромеханики Московского энергетического института: «Сейчас физика переживает глубокий кризис. Мы можем строить различные машины, аппараты, но сказать, что такое электричество в двух абзацах или в двух словах мы не можем. Электричество обычно определяется как движение зарядов. А что такое заряд, это очень широкое понятие, ибо заряд может быть электрона, заряд может быть молекулы, может быть заряд частиц, даже звёздного вещества, в этом смысле эти фундаментальные понятия трудно поддаются чёткому определению. Мы, например, не можем сказать, как в турбогенераторе разделяются заряды. Поэтому определить чётко, что такое электричество, мы не можем. Итак, если сделать вывод, то сегодня чёткое определение (понятие) электричества мы дать не можем!».
Когда физики говорят, что их фундаментальная наука «переживает глубокий кризис», это надо понимать так, что они все дружно зашли в тупик, свято веруя в те постулаты и концептуальные установки, которые составляют парадигму современной физики, принятую в начале ХХ века.
Можно сказать и по другому: современная физика начала строиться на фундаменте, в котором среди разных фундаментальных истин оказалась и одна мнимая истина. Будучи мнимой истиной, она то и привела учёных к глубокому кризису.
Как же выбираться из него?
Очевидно, чтобы выйти из тупика, или кризиса по-научному, надо вернуться назад, к тем постулатам и концептуальным установкам, которые были (случайно или злонамеренно) отвергнуты более века назад, когда формировалась парадигма нынешней современной физики.
Помните вот это заявление А.Эйншейна: «введение светоносного эфира в науку. является излишним»?! (Собр. науч. тр. М.: Наука. 1965. Т.1. С. 7–8. Zur Elektrodynamik der bewegter Korper. Ann. Phys., 1905, 17, 891-921). Автор «Теории Относительности» сделал такое заявление в 1905 году. А ведь именно под влиянием этого заявления Эйнштейна как раз и была сформирована безэфирная парадигма всей так называемой современной физики, толкающая современных российских учёных делать заявления о том, что наука о природе сегодня находится в глубоком кризисе!
Итак, если возвращаться назад, в прошлое, в поисках утраченных истин, нам надо прежде всего вспомнить определение электричества, которое дал миру гениальный Бенджамин Франклин, (тот самый, чей портрет изображён на банкноте США достоинством 100$).
С 1745 по 1750 годы испытателями природы разных стран и народов был предложен ряд теорий электричества, объединяемых одной общей чертой: наличием некоторого характерного флюида (от лат. fluidus — текучий), которому учёные приписывали самые необыкновенные свойства и качества, стараясь объяснить все электрические явления механическими процессами.
Теория, которую предложил Франклин в 1747 году, если оценивать её с позиции сегодняшнего дня, была самой правильной. Но тогда многие физики не считали её таковой! Исходила теория Франклина из следующего явления: если человек стоит на изолирующей скамеечке и натирает голой сухой рукой стеклянную трубку, то другой человек, стоящий на полу, может извлечь электрическую искру, приблизив свой палец либо к стеклянной трубке, либо к человеку, натиравшему трубку. Это явление можно варьировать, и оно прекрасно объясняется, если, согласно Франклину, принять, что существует лишь один-единственный электрический флюид, содержащийся во всех телах.
Франклин утверждал, что каждый процесс электризации состоит в извлечении из одного тела некоторой части находящегося в нём электрического флюида и его переходе в другое тело. Получающийся при этом недостаток или избыток электрического флюида в теле проявляется в характерных электрических явлениях.
Таким образом, тело наэлектризовано либо потому, что у него имеется избыток электрического флюида по сравнению с нормальным состоянием, либо потому, что у него оказывается меньше электрического флюида, нежели в нормальном состоянии.
В первом случае Франклин называл тело положительно (плюс) электризованным, во втором — отрицательно (минус) электризованным. Эта терминология сохранилась до наших дней.
Для объяснения электрических явлений Франклин приписывал электрическому флюиду три основных свойства: чрезвычайную тонкость, взаимное отталкивание его частей и сильное притяжение электрической материи к обычной (атомарной) материи.
Чрезвычайная тонкость у электрического флюида, согласно Франклину, имеется оттого, что его образует «особая форма материи», значительно более тонкая, чем обычная материя (атомы вещества).
Если тело заряжено положительно, то избыток электрического флюида размещается на его поверхности и образует «электрическую атмосферу» (сейчас это называется «электрическим полем»).
Это выражение «электрическая атмосфера» применялось в физике почти до середины XIX века подчас в строго физическом смысле. Часто говорили о «толщине» электрической атмосферы в геометрическом смысле. Через такое словоупотребление уже в XVIII веке пробило себе дорогу понятие плотности электрического флюида (с некоторых пор это называют «напряжённостью электрического поля»).
Сейчас я хочу объяснить, почему я считаю Бенджамина Франклина гением, к мыслям которого следует отнестись очень внимательно.
Им было дано совершенно правильное объяснение происхождения разных электрических зарядов, положительных и отрицательных, и в то время надо было быть своего рода ясновидящим, чтобы вот так смело заявить о том, что нет в природе двух видов электричества, а есть только одно электричество!
Я не знаю, почему мировое учёное сообщество после этого продолжило считать верной ранее возникшую теорию о существовании двух разных электрических флюидов, положительного и отрицательного, но факт остаётся фактом, эта теория о двух видах электричества господствовала в физике и в 18, и в 19 веках. И вот тому два свидетельства:
Когда в 1820 году голландский химик Ганс Эрстед открыл влияние электрического тока на магнитную стрелку (а фактически он открыл взаимодействие электрического тока с так называемым магнитным полем), то при описании этого открытия вместо определения «электрический ток» он использовал определение «электрический конфликт». По Эрстеду, «электрический конфликт» возникает всякий раз в том случае, когда положительный полюс химической батареи замыкается металлической проволокой с отрицательным полюсом этой же батареи, при этом разные по свойствам электрические флюиды с этих полюсов устремляются навстречу друг другу.
Вот фрагмент его объяснения:
«…Электрический конфликт действует только на магнитные частицы вещества. Все немагнитные тела проницаемы для электрического конфликта. Однако магнитные тела или, лучше сказать, магнитные частицы этих тел, сопротивляются прохождению этого конфликта, так что они оказываются увлечёнными столкновением противоположных действий. Согласно изложенным фактам, электрический конфликт, по-видимому, не ограничен проводящей проволокой, но имеет довольно обширную сферу активности вокруг этой проволоки. Кроме того, из сделанных наблюдений можно заключить, что этот конфликт образует вихрь вокруг проволоки. Иначе было бы непонятно, как один и тот же участок проволоки, будучи помещён под магнитным полюсом [стрелки] относит его к востоку, а, находясь над полюсом увлекает его к западу. Именно вихрям свойственно действовать в противоположных направлениях на двух концах одного диаметра. Вращательное движение вокруг оси, сочетающееся с поступательным движением вдоль этой оси, обязательно даёт винтовое движение…» (Книга Г. М. Голина и С. Р. Филонович «Классики физической науки», Москва, издательство «Высшая школа», 1989, с. 308).
Мне одному кажется, что в этом описании Эрстеда говорится не об одном открытии, а сразу о двух?! Ведь описанный учёным вихрь вокруг проволоки с током, это хорошо известное нам так называемое магнитное поле, вихревую природу которого современная физика в рамках своей парадигмы не способна объяснить!
А это уже слова Николы Теслы, сказанные им во время лекции «Эксперименты с переменными токами очень высокой частоты и их применение к методам искусственного освещения», проходившей в колледже Колумбия, в Нью-Йорке, 20 мая 1891 года (это уже конец 19 века!):
«Я должен признаться, что не могу поверить в два электричества. И ещё меньше я верю в существование «двойного» эфира. Загадочность поведения эфира, когда он ведёт себя как твёрдое тело по отношению к волнам света и тепла, и как жидкость по отношению к движению тел сквозь него, конечно, наиболее понятно и удовлетворительно объясняется, по предложению сэра Уильяма Томсона, тем, что он, эфир, находится в движении. Тем не менее, невзирая на это, не существует оснований, которые позволили бы нам уверенно заключить, что хотя жидкость не может передавать поперечные вибрации в нескольких сот или тысяч раз в секунду, она не сможет передавать подобные вибрации, если они будут в диапазоне сотен миллионов колебаний в секунду. Также никто не может доказать, что существуют поперечные волны эфира, испускаемые машиной переменного тока, дающей небольшое количество изменений направления тока в секунду. Для таких медленных вибраций, эфир, если он находился в состоянии покоя, может вести себя как истинная жидкость. Возвращаясь к нашему предмету, и не забывая о том, что существование двух электричеств, по меньшей мере, крайне маловероятно, мы должны помнить о том, что у нас вообще нет никаких доказательств существования электричества, и мы не можем надеяться получить их, если в рассмотрении нет «грубой материи».
Таким образом, электричество не может быть названо эфиром в широком смысле этого понятия, однако, ничто не может воспрепятствовать тому, чтобы назвать электричество эфиром, соединённым с материей, или связанным эфиром. Говоря другими словами, так называемый статический заряд молекулы – это эфир, определённым образом соединённый с молекулой… Вращение молекул и их эфира вызывает напряжения эфира или электростатические деформации. Уравнивание напряжений эфира вызывает движения эфира или электрические токи, а орбитальные движения молекул производят действия электромагнетизма и постоянного магнетизма. ». Источник.
Справка: «Молекула — (новолат. molecula, уменьшительное от лат. moles — масса) наименьшая частица вещества, обладающая его химическими свойствами».
Повторюсь, это было сказано Николой Тесла 20 мая 1891 года. Тогда атомы вещества считались учёными неделимыми, и о сложной структуре атомов ещё не было никакого представления.
Когда английский физик Джозеф Джон Томсон в ходе изучения так называемых катодных лучей нашёл доказательство, что все образующие их частицы тождественны друг другу и входят в состав вещества, об этом было рассказано им группе учёных на вечернем заседании Королевского общества 29 апреля 1897 года, тогда стало ясно, что высказанная американцем Бенджамином Франклиным ещё в 1747 году (за 150 лет до этого!) гипотеза об одном виде электричества получила убедительное экспериментальное подтверждение.
У меня сейчас в этой связи созрел вопрос: сколько ещё лет учёные будут говорить о кризисе современной науки, чтобы потом признать, что:
1) Г.Х.Эрстед был прав относительно наблюдения: «электрический ток образует вихрь вокруг проволоки» (вихрь, а не какое-то абстрактное «поле», вызывающее магнитные эффекты);
2) Н.Тесла был прав в своём предположении: «ничто не может воспрепятствовать тому, чтобы назвать электричество эфиром, соединённым с материей, или связанным эфиром».
Ах, да. Для того, чтобы такое признание стало возможным, необходимо сначала огласить вердикт, что Альберт Эйнштейн сильно погорячился в 1905 году, когда заявил, что «введение светоносного эфира в науку. является излишним»!
И да, ещё надо признать, что эксперименты по поиску так называемого «эфирного ветра» у поверхности нашей планеты, которые проводились в Альбертом Майкельсоном в 1880 году и позже, были если не мошенническими, то глубоко ошибочными!
Почему эта затея с измерением «эфирного ветра» была бесперспективной и, скорее всего, мошеннической, я рассказал в отдельной статье: «Верхи категорически против правды, а низы уже не хотят жить во лжи!» — это про современную физику. »
В заключение выскажу ещё одну мысль, что Игорь Петрович Копылов, доктор технических наук, профессор, заведующий кафедры электромеханики Московского энергетического института, не просто так сказал на камеру о том, что современная наука с её теперешней парадигмой не может объяснить природу электричества. Похоже, что тем самым он подаёт всему нашему обществу сигнал SOS, мол, нашу науку надо спасать, выводить из концептуального тупика! А сами учёные без поддержки народа этого не могут сделать.
Наверное, потому они не могут, что всё находится под контролем. Под чужим контролем! Недаром же ещё в 1928 году личный биограф банкирской семьи Ротшильдов Марк Эли Раваж заявил: «Мы положили стоп-кран на ваш прогресс!». Так вот, видимо, пришло время снять этот стоп-кран с науки о природе, которая к тому же ответственна за то, чтобы формировать у людей правильное мировоззрение!
Чтобы это произошло, надо об этом открыто заговорить. Прежде всего в СМИ. Если проблема есть, её надо решить, а не замалчивать!
11 августа 2020 г. Мурманск. Антон Благин
Тест по технологии Электрический ток и его использование 8 класс
Тест по технологии Электрический ток и его использование 8 класс с ответами. Тест включает 10 заданий с выбором ответа.
1. Основную часть электрической энергии люди получают преобразованием механической энергии при помощи специальных электромеханических машин. Как называются эти машины?
Составьте слово из букв:
2. Электрический ток, направление и значение которого не меняются со временем, называют …. Выберите один из 3 вариантов ответа
1) непредвиденным
2) переменным
3) постоянным
4. Приведите примеры изоляторов. Выберите несколько из 6 вариантов ответа
1) вода
2) стекло
3) резина
4) пластмасса
5) растворы солей и кислот
6) металл
4. Как называют устройство, которое преобразует какую-либо энергию в электрическую?
Составьте слово из букв:
5. Количество зарядов, прошедших за единицу времени через поперечное сечение проводника, называется …. Выберите один из 3 вариантов ответа
1) напряжением
2) сопротивлением
3) силой тока
6. Укажите единицу измерения силы тока. Выберите один из 4 вариантов ответа
7. Приведите примеры проводников. Выберите несколько из 7 вариантов ответа
1) металлы
2) резина
3) питьевая вода
4) растворы кислот
5) пластмасса
6) стекло
7) растворы солей
8. Упорядоченное (направленное) движение заряженных частиц под действием электрического поля — это …. Выберите один из 4 вариантов ответа
1) электрический ток
2) электрическая энергия
3) заряженное тело
4) электрический заряд
9. Устройство, которое преобразует электрическую энергию в другие виды энергии: свет, тепло, механическую и химическую энергию, — называют __________
10. Электрический ток, направление и значение которого способны периодически изменяться, называют …. Выберите один из 3 вариантов ответа
1) постоянным
2) непредвиденным
3) переменным
Ответы на тест по технологии Электрический ток и его использование 8 класс
1. ЭЛЕКТРОГЕНЕРАТОР
2-3
3-234
4. ИСТОЧНИК
5-3
6-4
7-1347
8-1
9. Приемник
10-3
Электрический ток
Нам известно, что телу можно сообщить заряд. Если не прикасаться после этого к телу, то полученный заряд будет оставаться на этом теле, то есть, перемещаться не будет.
Но если заставить заряд двигаться, можно наблюдать интересные явления. Потому, что именно движущиеся заряды создают:
Скорость теплового движения свободных электронов
Нам известно, что общий заряд тела состоит из большого количества элементарных зарядов.
К примеру, в твердых телах положительные заряды – это ядра атомов, или ионы. А отрицательные – это электроны.
А в жидкостях или газах – положительные и отрицательные заряды – это ионы.
Примечание: Ион – атом, у которого присутствует избыток электронов, либо наоборот, электронов меньше, чем в нейтральном атоме.
Рассмотрим твердый проводник, в нем присутствуют свободные заряды. Это такие электроны, которые оторвались от своего атома и свободно путешествуют по всему объему проводника.
Примечание: Проводник – это тело, в котором много свободных электронов.
Как известно из молекулярно-кинетической теории (МКТ), мельчайшие частицы вещества находятся в непрерывном движении. Это движение возникает под действием температуры, поэтому, его часто называют тепловым. Такое движение беспорядочное, то есть — хаотическое.
Рассчитаем, с какой скоростью электроны в проводнике беспорядочно перемещаются под действием температуры.
Для этого воспользуемся формулой среднеквадратичной скорости частиц из молекулярной физики:
Подставим в формулу такие числовые значения:
\(\large T = 300 \left( K\right)\) – комнатная температура +27 градусов Цельсия;
\(\large k = 1,38 \cdot 10^ <-23>\left( \frac<\text<Дж>>
\(\large m = 9,1 \cdot 10^ <-31>\left(\text<кг>\right) \) – масса электрона;
После расчетов получим скорость, примерно равную
Как видите, это очень большая скорость, более 100 километров в секунду.
Примечание: Физики свободные электроны в проводнике рассматривают, как частицы идеального газа. Его так и называют – электронный газ.
Однако, еще раз подчеркну, что тепловое движение – хаотическое. С помощью такого движения электрический ток не создать. Потому, что ток – это направленное движение зарядов.
Что такое электрический ток
Электрический ток – это направленное движение электрических зарядов.
В металлических проводниках движутся отрицательные заряды — электроны.
А в других проводниках, например, в жидких электролитах, направленно могут двигаться положительные и отрицательные ионы.
Внутри полупроводников заряд переносят электроны и дырки.
Примечание: Дырка – это псевдочастица, вакантное место для электрона. Она имеет положительный заряд, ее можно рассматривать, как пузырек, находящийся в электронном газе.
Мы видим, что электрический ток может создаваться движением, как положительных частиц, так и отрицательных.
При этом, положительные частицы будут притягиваться к отрицательному полюсу источника тока и двигаться по цепи к нему.
А отрицательные частицы будут притягиваться и двигаться к положительному полюсу источника тока.
Примечание: Чтобы определить направление движения заряженных частиц, можно воспользоваться аналогией с течением воды: Заряды, как вода, движутся оттуда, где их много, туда, где их мало. На заре изучения электричества считали, что во время протекания тока в телах протекает некая электрическая жидкость. Поэтому для электрического тока применяется аналогия с течением воды. Позже выяснилось, что никакой электрической жидкости в телах нет.
Если заряды движутся направленно, значит, и ток будет иметь направление.
Куда направлен ток
Как выбрать направление электрического тока? На движение каких частиц – положительных, или отрицательных, ориентироваться? Оказывается, направление тока — это условный выбор.
Физики договорились, что направление электрического тока совпадает с направлением движения положительных зарядов. Значит, ток направлен от «+» к «-» выводу источника тока.
Пусть, известно направление вектора напряженности \(\large \vec
Положительные заряды будут двигаться по направлению вектора \(\large \vec
Примечание: В металлах электроны движутся от минуса к плюсу, а ток направлен от плюса к минусу
Примечание: Наличие направленного движения зарядов можно определить косвенно. Протекая по проводнику, ток воздействует на этот проводник. Известны тепловое, химическое, или магнитное действие тока.
Чем больше ток, то есть, чем он сильнее, тем более заметно его действие.
Что такое поперечное сечение проводника
Электрический ток – это направленно движущиеся по проводнику свободные заряды. Его можно определить, когда известно количество заряженных частиц, прошедших через проводник.
Проводник может быть достаточно длинным. Поэтому неудобно учитывать заряды, находящиеся во всей длине проводника.
Чтобы было проще посчитать количество зарядов, на проводнике выбирают точку в любом удобном месте.
Через эту точку мысленно проводят плоскость, располагая ее перпендикулярно по отношению к проводнику. Так как эта плоскость в проводнике ограничивает собой площадь S, ее часто называют площадью поперечного сечения проводника.
Для вычисления силы тока, ведут подсчет зарядов, прошедших через это сечение.
Как рассчитать площадь сечения
Проводник будем считать круглой трубкой, по аналогии с трубой, по которой течет жидкость. Пользуясь этой аналогией, так же, примем, что внутри такой трубки будут двигаться заряды, они обозначены кружками на рисунке.
Выделим на трубе какую-либо точку. Мысленно отрежем кусок трубы, проводя разрез перпендикулярно. Стенки трубки в месте отреза являются границей круга.
Площадь полученного круга можно вычислить по такой геометрической формуле:
\[\large \boxed < S_<0>= \pi \cdot \frac
\(\large S_ <0>\left( \text<м>^ <2>\right)\) – площадь круга;
\(\large \pi \approx 3,14\) – число Пи;
\(\large D \left(\text<м>\right)\) – диаметр круга;
\(\large R \left(\text<м>\right)\) – радиус круга;
Проводник может иметь не только цилиндрическую форму. Промышленность изготавливает металлические проводники, имеющие квадратное, прямоугольное, треугольное или какое-либо другое сечение. Понятно, что площади таких сечений нужно рассчитывать, пользуясь другими геометрическими формулами.
Сила тока по определению
Силу тока (ток) обозначают большой латинской буквой \(\large I\).
Постоянный ток можно рассматривать, как равномерное направленное движение заряженных частиц. Равномерное – значит, с одной и той же скоростью.
Если же ток изменяется, то будет изменяться и скорость движения зарядов.
Ток равен заряду, прошедшему через поперечное сечение проводника за одну секунду.
Для постоянного тока используем формулу:
\(\large I \left(A\right)\) – ток (сила тока) в Амперах;
\(\large \Delta q \left( \text<Кл>\right) \) – заряд в Кулонах, прошедший через поперечное сечение проводника;
\(\large \Delta t \left( c\right) \) – промежуток (кусочек) времени, в течение которого заряд прошел;
Если электрический ток не изменяется ни по величине, ни по направлению, то его называют постоянным.
Если хотя бы одна из характеристик изменяется, ток называют переменным. Он будет различным в разные моменты времени. Если задано уравнение, описывающее, как изменяется заряд, то для вычисления такого тока удобно пользоваться производной.
Исключаем путаницу с понятием силы
В физике исторически сложилось использование таких терминов, как
Эти единицы измерения имеют в своем названии слово «сила». Из механики известно, что сила – величина векторная, измеряется в Ньютонах. Однако, пусть это не вводит вас в заблуждение.
Ни одна из описанных величин не измеряется в Ньютонах. Перечисленные величины имеют другие единицы измерения:
Чтобы исключить путаницу, вместо термина «сила тока», можно употреблять слово «ток». Сравните выражения: «Силу тока измеряют в Амперах» и «ток измеряют в Амперах».
Как видно, вполне можно обойтись словом «ток», вместо «силы тока». Смысл от этого не изменится.
Что такое 1 Ампер в системе СИ
Сила тока в 1 Ампер была определена в системе СИ с помощью силы взаимного действия двух проводников с током.
Рассмотрим два тонких проводника (рис. 9). Каждый проводник имеет бесконечную длину. Расположим их в вакууме параллельно на расстоянии 1 метр один от другого.
Выделим на каждом проводнике кусочек длиной 1 метр.
Если проводники взаимодействуют с силой \(\large 2 \cdot 10^ <-7>\) Ньютона, приходящейся на каждый метр их длины, то по каждому из них течет постоянный ток 1 Ампер.
Ампер – это основная единица в системе СИ. А заряд Кулон – величина, определяемая с помощью Ампера.
1 Кулон – это заряд, проходящий за 1 секунду через поперечное сечение проводника с током 1 Ампер.
Один Ампер – много это, или мало
1 Ампер это 1 Кулон деленный на 1 секунду. Для большинства бытовых электроприборов это достаточно большая сила тока.
Например, через энергосберегающие лампы протекают токи 0,04 — 0,08 Ампера.
Большой плоский телевизор от электроосветительной сети потребляет ток 0,2 Ампера.
Лампа накаливания –примерно 0,5 Ампера.
Как видно, большинство электроприборов потребляют токи менее одного Ампера.
Поэтому, для тока часто применяют дольные единицы измерения:
миллиамперы, микроамперы, и наноамперы:
1мА (миллиампер)= 10⁻³ А
1мкА (микроампер) = 10⁻⁶ А
1нА (наноампер) = 10⁻ 9 А
Ток зарядки аккумулятора мобильного телефона может достигать 2 Ампер.
А через электрический обогреватель, или электрочайник, протекает ток силой до 10 Ампер.
Примечание: Ток силой всего 0,05 А может привести к летальному исходу. Будьте осторожны с электричеством!
В то же время, используют и токи, превышающие сотни Ампер. Например, на промышленных электростанциях.
Для таких токов применяют кратные единицы: килоампер, мегаампер.
1КА (килоампер)= 10³ А
1МА (мегаампер) = 10⁶ А
Связь между силой тока и скоростью движения зарядов
Рассмотрим металлический проводник. Мысленно выделим в нем два сечения площадью \(\large S \) на некотором расстоянии \(\large \Delta x\) одно от другого. Сечения располагаются поперечно проводнику.
В металлах электрический ток создается электронами. Обозначим \(\large e_<0>\) заряд каждого электрона.
Заряды в проводнике, под действием электрического поля напряженностью \(\large \vec
При этом, они будут проходить путь \(\large \Delta x\) между двумя сечениями.
Если ток постоянный, то скорость движения зарядов изменяться не будет.
В таком случае, расстояние \(\large \Delta x\) и скорость \(\large v\) движения электронов будут связаны формулой равномерного движения.
\[\large \Delta x = v \cdot \Delta t\]
\(\large \Delta x \left( \text<м>\right) \) – расстояние между двумя поперечными сечениями;
\(\large v \left( \frac<\text<м>>
\(\large \Delta t \left( c \right) \) – интервал времени, за который пройдено расстояние \(\large \Delta x\) между двумя поперечными сечениями;
Выразим из этой формулы время движения:
Это выражение нам понадобится далее.
Сечения \(\large S \) и расстояние между ними \(\large \Delta x\) образуют в проводнике цилиндрический объем:
\[\large V = S \cdot \Delta x\]
\(\large V \left( \text<м>^<3>\right) \) – объем цилиндра;
В этом объеме содержится определенное количество электронов. Обозначим это количество: \(\large N \) штук.
Количество штук \(\large N \), расположенное в объеме \(\large V\), называют концентрацией:
\(\large n \left( \frac<\text<штук>><\text<м>^<3>>\right) \) – концентрация зарядов в объеме;
Найдем общий заряд всех заряженных частиц, расположенных в объеме \(\large V\) между двумя поперечными сечениями:
\[\large \Delta q = e_ <0>\cdot N\]
Умножим правую часть уравнения на единицу, которую представим в виде дроби \(\displaystyle \frac
\[\large \Delta q = e_ <0>\cdot N \cdot 1 = e_ <0>\cdot N \cdot \frac
Числитель V дроби и количество N частиц поменяем местами.
\[\large \Delta q = e_ <0>\cdot V \cdot \frac
Подставим в эту формулу выражение для объема:
\[\large \Delta q = e_ <0>\cdot S \cdot \Delta x \cdot \frac
Дробь в правой части заменим символом «n» концентрации:
\[\large \Delta q = e_ <0>\cdot S \cdot \Delta x \cdot n\]
Средняя скорость совместного направленного движения зарядов \(\large v\).
Применим определение силы тока:
Подставим в это выражение формулу для общего заряда, прошедшего через сечение проводника:
\[\large I = \frac <\Delta q> <\Delta t>= \frac
Выражение для удобства можно переписать так:
\[\large I = e_ <0>\cdot S \cdot \Delta x \cdot n\cdot \frac <1> <\Delta t>\]
Мы заранее выразили время \(\large \Delta t \):
Найдем для него обратную величину:
Подставим ее в формулу для тока:
\[\large I = e_ <0>\cdot S \cdot \Delta x \cdot n \cdot \frac
Расстояние \(\Delta x\) находится в числителе и в знаменателе, оно сократится. Окончательно получим выражение для связи между силой тока и скоростью движения зарядов:
\[\large \boxed \cdot S \cdot n \cdot
Теперь можно утверждать, что
Расчет скорости направленного движения электронов
Для этого можно использовать полученную формулу:
\[\large I = e_ <0>\cdot S \cdot n \cdot
Из нее можно выразить скорость:
\[\large \boxed<\frac
Чтобы найти скорость, с которой электроны движутся в проводнике, нужно: ток (I) разделить на заряд (е) электрона, концентрацию (n) электронов и площади сечения проводника (S).
Большинство соединительных проводников изготавливают из меди, или алюминия. Выберем медный проводник, имеющий цилиндрическую форму.
Площадь поперечного сечения выберем равной 1 миллиметру в квадрате:
\[\large S = 10^ <-6>\left( \text<м>^<2>\right) \]
Число атомов в объеме – концентрация, связано с плотностью вещества (ссылка). Для меди концентрацию атомов вычислить несложно. Она
равна концентрации электронов.
Примечание: Каждый атом меди отдает один из своих валентных электронов и, он превращается в свободный электрон. Поэтому, количество свободных электронов, находящихся в выбранном объеме меди будет равно количеству атомов в этом объеме.
Заряд электрона известен:
\[\large e_ <0>= 1,6 \cdot 10^ <-19>\left(\text<Кл>\right) \]
Предположим, в проводнике протекает ток силой 1 Ампер.
Тогда, скорость движения электронов:
\[\large v = 7 \cdot 10^ <-5>\left( \frac<\text<м>>
Это меньше, чем 0,1 мм в секунду.
Скорость распространения электрического поля и скорость движения зарядов — в чем различия
Нужно различать скорость, с которой распространяется электрическое поле, при подключении к проводнику источника тока и скорость движения заряженных частиц в проводнике.
Скорость, с которой распространяется электрическое поле напряженностью \(\large \vec
\[\large c = 3 \cdot 10^ <8>\left( \frac<\text<м>>
А скорость направленного движения зарядов значительно меньше — менее 0,1 мм в секунду.
Примечание: В качестве скорости направленного движения свободных зарядов, выбирают среднее значение скорости, с которой перемещаются заряды во время протекания тока. Ее, так же, называют скоростью дрейфа.
В то же время, при комнатной температуре скорость беспорядочного теплового движения электронов немногим более 100 километров в секунду.
То есть, заряды быстро движутся хаотично, но при этом, они согласованно и достаточно медленно передвигаются в определенном направлении.
Такое движение можно сравнить с движением потока муравьев на лесной тропе. Каждый муравей в потоке движется хаотично. Но при этом, весь поток движется согласованно в выбранную сторону.
Пользуясь аналогией из окружающей природы, движение заряженных частиц во время протекания электрического тока можно сравнить с движением муравьев.
Каждая частица движется хаотически под действием температуры и одновременно с этим, все частицы смещаются в одном направлении в общем потоке под действием электрического поля.
Условия существования постоянного тока
Напомню, что ток называют постоянным, если его сила не изменяется со временем.
Для обозначения постоянного тока математики используют такую сокращенную запись:
Чтобы ток мог существовать, нужно, чтобы выполнялись несколько условий.
Нужно, чтобы между телами, заряженными противоположно, непрерывно существовало электрическое поле. Так же, в цепи должны присутствовать свободные носители заряда. А сама электрическая цепь должна быть замкнутой.
Рассмотрим эти условия подробнее.
Создаем кратковременный ток и выясняем условия его существования
Можно создать электрический ток с помощью двух заряженных противоположно тел.
Ток – это движение зарядов. Поэтому, нужно обеспечить возможность зарядам двигаться. То есть, нужно создать между телами дорожку, по которой заряды начнут перемещаться из одного места пространства в другое.
Продемонстрировать возникновение тока на небольшой промежуток времени можно с помощью двух электрометров, заряженных противоположно.
Попробуем для начала соединить два заряженных тела куском диэлектрика (рис. 15).
Как видно, после соединения заряд каждого из электрометров не изменился.
Это значит, что ток не возник. Дело в том, что в диэлектрике все электроны связаны со своими атомами и свободных электронов нет.
Именно свободные заряды будут передвигаться и их согласованное направленное движение мы назовем электрическим током.
Поэтому, одним из условий существования тока будет наличие свободных зарядов. То есть, наличие проводника, содержащего такие заряды.
Условие 1. Чтобы ток существовал, требуется наличие свободных зарядов.
Однако, только лишь наличия проводника недостаточно. Действительно, в проводнике присутствуют свободные заряды. Но для того, чтобы эти заряды начали совместное движение в определенную сторону, нужно, чтобы на них подействовала сила, которая будет их передвигать в этом направлении.
Сила будет действовать на заряженную частицу, если ее поместить в электрическом поле.
Электрическое поле существует в пространстве вокруг заряженных тел.
Если соединить проводником два тела, имеющие противоположные заряды, то на свободные частицы в проводнике будет действовать электрическое поле. Это поле подхватит заставит двигаться электроны в определенном направлении.
Поэтому, еще одно условие для возникновения тока – это электрическое поле.
Условие 2. Чтобы ток существовал, требуется наличие электрического поля.
Ток течет в направлении движения положительных зарядов.
Соединив два заряженных металлических тела проводником, мы получим ток лишь на короткий промежуток времени. Это время будет составлять доли секунды.
Кроме того, в начальный момент времени сила тока будет самой большой. А далее будет убывать по мере того, как тела будут разряжаться и их потенциалы (ссылка) будут выравниваться.
Мы же хотим, чтобы ток протекал постоянно, или, по крайней мере, достаточно длительный промежуток времени, выбранный по нашему усмотрению. И чтобы во время протекания тока его сила не изменялась.
Как этого добиться? Мы вплотную приблизились к третьему условию существования постоянного электрического тока.
Как создать длительный ток и что для этого необходимо
Положительный заряд – это недостаток электронов, а отрицательный – это их избыток. В момент соединения тел проводником, отрицательные электроны устремились к положительно заряженному телу.
А в конце ток прекратился потому, что заряды тел скомпенсировались и тела превратились в электрически нейтральные. Нам известно, что нейтральные тела электрическое поле не создают.
Значит, ток существует до тех пор, пока существует электрическое поле. Поэтому, нужно каким-либо образом поддерживать электрическое поле. А для этого нужно, чтобы одно из тел обладало избыточным отрицательным зарядом. То есть, нужно поддерживать на одном из тел отрицательный, а на другом – положительный заряд. Пока заряды тел будут поддерживаться, ток будет существовать.
Чтобы на теле с положительным зарядом поддерживать этот заряд, нужно убирать с этого тела прибежавшие туда электроны и отправлять их обратно на отрицательно заряженное тело.
Такая схема по своему устройству напоминает фонтан, в котором насос поддерживает разность давлений. В нагнетающей воду трубе давление больше, чем в трубе, через которую вода поступает обратно в насос.
Именно благодаря этой разности, из одной трубы вода выплескивается вверх, а собранная в чашу вода попадает обратно в насос. При этом, по контуру циркулирует одно и то же количество воды, то есть, водяной контур замкнут. А ток воды в этом контуре поддерживается специальным устройством – насосом. Он совершает работу против силы тяжести.
Сторонние силы — что это такое
Подобно своеобразному насосу устроен источник тока. Внутри источника действуют сторонние силы. Они возвращают электроны на «-» контакт.
На заряды в электрическом поле будет действовать сила. Она называется силой Кулона и имеет электрическую природу. Электроны будут притягиваться к телу, имеющему положительный заряд.
Сила Кулона будет мешать возвращать электроны на отрицательное тело. Подобно силе тяжести, которая мешает воде в фонтане двигаться вверх.
Чтобы вернуть электроны на отрицательно («-») заряженное тело, нужно совершить работу против силы Кулона. Значит, должна присутствовать какая-то внешняя сила, возвращающая электроны на отрицательно («-») заряженное тело. Эта сила имеет неэлектрическую природу, она называется сторонней силой.
Теперь можно ответить на вопрос: Что такое источник тока?
Источник тока — это устройство, внутри которого сторонние силы перемещают заряды против сил Кулона. Сила Кулона – это сила, с которой электростатическое поле действует на заряд.
Во время существования электрического тока сами электроны не расходуются. Они, как вода в фонтане, циркулируют по замкнутой траектории.
Условие 3. Чтобы ток существовал длительно, электрическое поле нужно долговременно поддерживать.
Чтобы ток существовал постоянно, нужно, чтобы между заряженными противоположно телами электрическое поле существовало непрерывно.
Примечание: В качестве заряженных противоположно тел можно рассматривать контакты источника тока.
Для этого электроны нужно пропустить по замкнутому контуру, т. е. непрерывной электрической цепи. Поэтому, еще одно условие существования постоянного тока – это замкнутая электрическая цепь. Как только замыкается цепь, в направленное движение приходят все заряженные частицы, находящиеся в этой цепи.
Условие 4. Чтобы ток существовал, требуется, чтобы электрическая цепь была замкнутой.
В такой цепи заряды циркулируют по замкнутой траектории. То есть, заряд, вышедший из источника и совершивший полный оборот, попадет обратно в источник тока. Там он будет подхвачен сторонними силами и через противоположный вывод источника тока попадает обратно в цепь. Затем, будет двигаться далее и, совершит следующий круг. Поэтому, во время протекания электрического тока сами заряды не расходуются.
Во время протекания электрического тока заряды не расходуются. То есть, по замкнутой цепи двигаются одни и те же заряды. Совершив круг, они попадают в источник и, выходя из противоположного его вывода направляются обратно в цепь.
Нам известно, если на заряд действует сила и, под действием этой силы заряд перемещается, то эта сила совершает работу.
Это значит, что сторонние силы в источнике совершают работу. Подробнее о работе сторонних сил (ссылка).