Выброс водорода в атмосферу чем грозит
Водородное дыхание Земли
«Все процессы на Земле нужно рассматривать нанизанными на ось водородной дегазации» (Н. Ларин)
Водородный баланс планеты
В Земной атмосфере находится около 2.5 млрд. тонн водорода, который улетучивается в космос по 250 тысяч тонн в год. Источником восполнения «космических потерь» является водородная дегазация Земли в различных проявлениях.
Еще академик Вернадский считал: «Наши представления о термодинамических и химических условиях глубин нашей планеты заставляют нас видеть в них среды, благоприятные для существования водородистых тел. Здесь активность химических реакций уменьшается, кислород быстро «сходит на нет», начинают все более и более преобладать металлы типа железа и, по-видимому, растет количество водорода. В то же самое время температура и давление повышаются. Все это должно привести к сохранению в этих глубинах водородистых соединений, и в том числе растворов водорода в металлах».
Уже не вызывает сомнений, водород — глубинный газ планеты. В 70 годах ХХ века В.Н.Ларин предложил гипотезу гидридного ядра Земли, содержащего сверхсжатый водород.
Водородная дегазация планеты — явление выделения водорода в смеси с другими флюидными газами (чаще всего углеводородами, гелием и радоном) в рифтовых зонах, при извержениях вулканов, из разломов земной коры, кимберлитовых трубок, некоторых шахт, и скважин. Во многих случаях землетрясения тектонического происхождения сопровождаются увеличением содержания водорода в воздухе на территории эпицентра и прилегающих площадях.
Геохимическая модель Земли
Как видно из схемы водородной дегазации, до поверхности Земли глубинный водород доходит в виде углеводородов, воды и в виде газа Н2. В общий водородный баланс добавляют и реакции гидролиза океанической воды при амфиболизации, хлоритизации, серпентинизации пород мантии в зонах субдукции по преобладающей схеме:
Литосфера, как плотный слой оксидов, является сложнопреодолимым барьером, препятствующим выходу водорода на поверхность. В результате происходит накопление газа под корой, где он вступает в химические реакции с прочими веществами, что сопровождается дополнительным выделением тепла. Скорее всего, именно наличие водорода делает астеносферу квази-жидкой средой. Полученные методом сейсмотомографии данные свидетельствуют о том, что на глубине около 100 км над астеносферой формируются многочисленные очаги землетрясений, фиксирующие подъем флюидного и расплавного материала.
Как выглядят выходы водорода на поверхности планеты?
В зонах выходов водорода в рельефе Земли образуются весьма характерные “структуры проседания”, по форме напоминающие “блюдца”, диаметры которых варьируют от 100 м до нескольких километров.
«До сих пор наши работы проводились на Русской платформе. Однако, судя по космическим снимкам, аналогичные структуры присутствуют на всех континентах. И особенно широко они представлены на восточном побережье США. Американцы обнаружили эти образования в 30-тых годах прошлого века, тщательно исследовали их на протяжении многих десятилетий, но так и не смогли установить причину образования этих загадочных структур, вошедших в литературу под термином “Carolina Bays”. По нашему мнению причина та же – струйная дегазация водорода из глубинных зон планеты».[3]
Месторождения водорода
В мире существуют и с успехом эксплуатируются водородные скважины.
Водородные круги на полях.
После долгой зимы газ скапливается под промерзшим слоем почвы и прорывается на поверхность, образуя кучи рыхлой Земли, похожие на муравейники, за которые их часто принимают!
Следы выброса водорода в почвах не всегда округлые, бывают и молниевидные, эти следы на космоснимках могу быть такие как в Кеви, Сербия.
Более значительные объёмы газов скапливаются под слоем вечной мерзлоты, образуя бугры пучения.
Бугры пучения на Ямале, и их дальнейшая взрывная эволюция.
Карстовые пещеры
Проходя через известняковый слой водородный поток вступает в экзотермическую реакцию обмена, образуя соединения кальция, воду и углекислый газ. Благодаря этому получаются значительные карстовые провалы и воронки.
И не за миллионы лет, как нас пытаются убедить геологи! Иногда процесс «разъедания» водородом известняковых структур происходит буквально на глазах удивленных людей, все зависит от интенсивности потока газа.
Вот наглядные примеры:
Провалы грунта
В Гватемале трагедия с появлением огромной воронки уже не первая, аналогичный случай, унесший 5 жизней, был 23-го февраля 2007 года.
Глубина воронки достигала 100 м.
Дыра в Гватемале 2010. Фото: National Geogrphic
Круглые озёра
На нашей планете существует множество округлых глубоких озёр, образованных выходами водорода, и это не следы мифических войн прошлого и «атомных» бомбардировок древних цивилизаций!
Оригинальное серповидное озеро с перемещаемым островом образовалось в Аргентине.
Коралловые атоллы
Осмелюсь предположить, что некоторые округлые глубокие лагуны океанических атоллов обязаны своим появлением водороду, рвущемуся на поверхность.
Последовательные стадии формирования атолла:
Согласно официальной версии, формирование атолла является результатом постепенного разрушения вулкана. Может, в каких-то случаях это и так. Но не кажется ли странным, что в результате водной эрозии значительно более плотные вулканические породы уходят на глубину иногда более 100м, оставляя нетронутой хрупкую известняковую корону?
Гораздо логичнее, если выходящие на поверхность потоки газа растворяют известняковые структуры и образуют лагуны округлых форм.
Рифтовые зоны
Рифтовые зоны и особенно срединно-океанические хребты являются самыми сильными источниками дегазации планеты. И это логично, ведь это области, где отсутствует базальтовый слой и магматические очаги сквозь вулканические отложения напрямую через «чёрных и белых курильщиков» выходят в океан, образуя зоны расширения Земли (cм. статью Земля под нами расширяется!)
На рисунке Байкальская рифтовая зона — расширяющийся разлом земной коры протяженностью около 1 500 км.
Профессор В.Л. Сывороткин доказал, что глубинный водород, попадая в атмосферу, достигает озонового слоя (30 км) и, вступая в реакцию О3 + 3Н2 = 3Н2О, образует озоновую дыру и кристаллики льда, которые мы видим в виде красивейших перламутровых и серебристых облаков.
Ледяные круги
Эти большие кольцевые образования диаметром в несколько километров, периодически появляющиеся на ледяной поверхности Байкала.
По результатам наблюдения из космоса стало известно, что кольца появлялись в 2003, 2005, 2008 и 2009 годах и каждый раз на новом месте.
Образование кругов связано с выбросами природного горючего газа (метана и водорода) из рифтовой зоны Байкала. Летом в таких местах из глубины на поверхность поднимаются пузыри, а зимой образуются «пропарины» диаметром от полуметра до сотен метров, где лед очень тонкий или вообще отсутствует. Загадочные круги на Байкале.
Вулканы
Наиболее активно процесс дегазации планеты происходит вулканах рифтовых зон.
Геологи давно обратили внимание на выходы газа из земли через глубинные разломы литосферы. Обычно его определяли, улавливая выделение гелия. Существуют два изотопа: гелий-3 (якобы сохранившийся со времени образования нашей планеты) и гелий-4 (радиогенный, возникающий при распаде ядер урана и тория). Первый сосредоточивается в зонах разломов на границе континентальной и океанической коры: здесь его содержание в тысячу раз выше, чем в породах материков. Данное смещение изотопных отношений свидетельствует о том, что газ идет из мантии. Вместе с гелием оттуда поднимается и скапливается водород. Объем выброшенного за одно извержение силикатного расплава редко превышает 0,5 кубического километра, тогда как объем газовой фазы в сотни и тысячи раз больше объема твердой фазы. Ещё в 1964 году А. Риттман говорил, что вулканы следует рассматривать, прежде всего, как структуры дегазации планеты.
Горение газа в вулканической лаве Гавайских островов.
Выходы водорода во время землетрясений
Так дышит земля в Японии после землетрясения:
» alt=»»>
То есть, от процесса водородной дегазации напрямую зависит тектоническая активность планеты!
Другие проявления дегазации Н2
Встречаются зоны водородного обогащения и на нефтегазовых месторождениях. В Швеции, при бурении скважины Гравберг-1 глубиной 6770 м, ниже 4 км отмечено существенное повышение содержания водорода. «Газят» и участки литосферы, так в шахтном газе глубоких подземных выработок Хибин повышено содержание водорода. Например, кимберлитовая трубка «Удачная» в республике Саха-Якутия, ежедневно выбрасывает наружу до 100 тыс. кубометров газа. Очевидно, образование алмазов происходит также в водородной среде.
Для безопасности шахтеров, нужно измерять водород!
Постоянная проблема взрывоопасности существует в шахтах, особенно в угольных. И без признания и понимания процессов водородной дегазации взрывы в шахтах неизбежны.
Аспекты водородной дегазации Земли
Человечество должно признать и учитывать в своей хозяйственной деятельности дегазацию водорода из глубин планеты. Это необходимо делать перед строительством любых объектов. Пока только в России учитываются выходы водорода при эксплуатации АЭС.
Первенство в открытии водородного дыхания планеты принадлежит нашим ученым. Было бы крайне обидно, закупать на Западе технологии и машины, работающие на энергоносителе будущего экономического уклада. Почему бы России, вслед за гиперзвуком, не сделать качественный скачек в добыче и применении самого энергетически емкого и экологичного из топлив?
К сожалению, официально, водород до сих пор не является полезным ископаемым. Поэтому его изыскание и добыча пока не регламентируются. Но применение водорода как топлива будущего, уже в серийных автомобилях, экспериментальных поездах, самолетах и ракетах неизбежно приближает нас к водородной эре!
Источники:
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
masterok
Мастерок.жж.рф
Хочу все знать
Климатологи изучили образцы льда, сформировавшиеся в Антарктике в середине XIX века, и пришли к выводу, что концентрация водорода в воздухе выросла более чем на 70% за последние полтора столетия. Этот рост дополнительно ускорил глобальное потепление, пишут ученые в статье в журнале PNAS.
«Проведенная нами реконструкция показывает, что доля водорода в атмосфере почти не менялась до конца XIX века, после чего она начала плавно расти и выросла на 70% к началу текущего столетия. Вдобавок, мы зафиксировали резкий всплеск в концентрации водорода в конце прошлого века, чье существование ставит под сомнение связь между антропогенными выбросами угарного газа и водорода», — пишут исследователи.
Водород представляет собой очень легкий газ, активно взаимодействующий с кислородом и другими окислителями. Сегодня водород рассматривается в качестве замены для топлива на базе нефтепродуктов или природного газа, так как его сжигание не приводит к накоплению в атмосфере парниковых газов и различных токсинов.
С другой стороны, водород сам по себе является парниковым газом, так как его попадание в нижние слои атмосферы замедляет распад метана и способствует образованию озона, чьи молекулы мешают теплу покидать Землю. По текущим оценкам ученых, водород значительно уступает углекислому газу в силе действия на климат, однако его роль может заметно вырасти после перехода цивилизации на водородную энергетику.
Группа климатологов под руководством Эрика Зальцмана, профессора университета Калифорнии в Ирвине (США), получила первые сведения о том, как менялась концентрация водорода в атмосфере Земли за последние полтора столетия. Ученые получили подобные сведения, проанализировав химический состав пузырьков воздуха, заточенных в залежах льда в Антарктике.
Водородное загрязнение атмосферы
Первые серьезные наблюдения за концентрацией водорода в атмосфере, как отмечают профессор Зальцман и его коллеги, были организованы на глобальном уровне лишь в конце 1980-х годов. По этой причине ученые не могли точно сказать, с какой скоростью накапливается водород в воздухе Земли и какие промышленные процессы порождают его выбросы.
Ученым удалось получить подобные сведения благодаря уникальным отложениям льда, которые формировались с 1852 года на территории «мегадюн», волнообразных отложений спрессованного снега в Восточной Антарктике. Они расположены в регионе с крайне низким уровнем осадков, благодаря чему относительно тонкий слой льда толщиной в 60-70 метров содержит в себе слои, формировавшиеся на протяжении многих десятилетий.
Климатологи собрали образцы льда из разных регионов «мегадюн», извлекли пузырьки воздуха из подобных прослоек и детально изучили их химический состав. Как показал проведенный ими анализ, за последние 150 лет концентрация водорода в атмосфере резко выросла. Она повысилась примерно на 70%, причем весь этот рост пришелся на последние сто лет.
Замеры профессора Зальцмана и его коллег указали на то, что особенно быстро концентрация водорода росла в последние два десятилетия XX века. Это открытие стало неожиданностью для ученых, так как исследователи в прошлом считали, что главным источником этих утечек служит производство так называемого синтез-газа, смеси из водорода и угарного газа.
Его выработка начала сокращаться в 1980-х годах, из-за чего многие ученые считали, что аналогичным образом должны были упасть концентрации водорода в атмосфере. Образцы льда из Антарктики указывают на то, что это на самом деле не так, что свидетельствует о наличии других серьезных источников антропогенных выбросов водорода. Их поиски и изучение должны стать одной из главных задач для климатологов, подытожили исследователи.
Мировая энергетика: «Водород сохранит экологию и обезопасит Планету»
Мировая энергетика в последнее время вышла на принципиально новый уровень социально-экономического развития, когда важным становится вопрос не чем топить, а как топить. Промышленность предлагает много самых разных вариантов энергоресурсов от угля до энергии приливов и отливов. При этом свой выбор человечество делает уже не в пользу самых дешевых и доступных источников, как это было еще лет тридцать назад, а в пользу наиболее экологически чистых и энергоэффективных. Ведущие мировые игроки, такие как Евросоюз, Япония, США, Китай и Россия, сейчас активно создают условия для инвестиций в разработку новых энергетических технологий. Одним из наиболее перспективных вариантов может стать повсеместное широкое применение водорода как топлива и накопителя энергии.
Первый элемент
Водород — первый элемент таблицы Менделеева — кажется, специально существует на Земле для того, чтобы стать идеальным топливом. Он самый распространенный элемент во всей Вселенной. Его теплота сгорания достигает 120 МДж/кг. А у метана (следующего энергоресурса по данному показателю) она втрое меньше — 56 МДж/кг.
При использовании водорода образуется чистая вода без вредных выбросов в атмосферу, что полностью соответствует мировой экологической повестке. Этот газ давно нашёл применение в нефтеперерабатывающей и химической промышленности, поэтому опыт работы с ним человечество уже накопило.
Согласно данным МЭА, всего в мире производится примерно 69 млн тонн водорода в год, а также 48 млн тонн ежегодно получается в качестве подобного продукта. Из них 63 % используется в химической промышленности, 31 % — в нефтепереработке, 6 % — в обработке и менее 1 % — в качестве топлива для автомобилей, грузовиков и ракет. Именно космическая отрасль первая оценила возможности водорода в качестве топлива. В 80-ые годы жидкий водород активно использовался как ракетное топливо для Space Shuttle и «Бурана». Мало того, в СССР был даже создан первый самолет на базе ТУ-154 с двигателем на водородном топливе.
Водородный прототип летал под рабочим названием Ту-155
Но только в последнее десятилетие на фоне активного внедрения промышленно развитыми странами экологических программ по снижению выбросов CO2 в атмосферу и подписания Парижского соглашения по климату водород стали рассматривать как реальную альтернативу углеводородному топливу. Все больше государств приходит к выводу о необходимости постепенного перевода энергетики на метано-водородную основу.
Как отметил нобелевский лауреат премии мира, председатель международного комитета премии «Глобальная энергия» Рае Квон Чунг, водород является оптимальным решением для декарбонизации мировой экономики и достижения цели нулевых выбросов к 2050 году.
«Многие страны, включая США, Германию, Японию и даже Корею, активно занимаются водородной экономикой и уже производят водородные автомобили. Переход от метано-водородного топлива к водороду станет практическим подходом, который может стимулировать развертывание водородной инфраструктуры. Инновации для массового производства водорода по конкурентоспособной цене будут иметь решающее значение для перехода к водородной экономике. Опробование и оптимизация различных технологий, включая пиролиз метана и плазмохимические методы получения водорода из природного газа, станут важным шагом в продвижении к глубокой декарбонизации для достижения цели, поставленной в Парижском климатическом соглашении», — заявил Рае Квон Чунг «Глобальной энергии».
Водородный мир
Наиболее активно внедряет водородные технологии Япония, сильно зависимая от импорта углеводородов.
В стране еще в 2014 году была принята дорожная карта по построению общества, базирующегося на водороде.
Согласно программе, использование водорода должно вырасти с 200 тонн в 2018 году до 10 млн тонн в 2050 году. Уже сейчас японский автопарк насчитывает около 2,5 тысяч машин с водородным двигателем. Одновременно активно прорабатываются планы по закупкам Японией водорода из Австралии. Правда, этот газ будет получен за счет нефтепереработки.
Китай летом 2019 года выпустил «Белую книгу» о китайской водородной энергетике и топливных элементах, согласно которой к 2050 г. водород будет составлять 10 % от энергопотребления страны или 60 млн тонн в год. Уже к 2030 году автопарк КНР должен вырасти до 2 млн машин на водородных топливных элементах.
Рабочая схема автомобиля с водородной силовой установкой
Шанхай собирается построить в районе Цзядин водородную энергетическую гавань мирового класса с целью создания надежной производственной цепочки для водородного транспорта. На её базе сформируется промышленный кластер площадью 2,15 кв. км и с объемом выручки 7,23 млрд долларов в год.
В Европе в 2017 году была запущена «Объединенная технологическая инициатива по топливным элементам и водороду» (Fuel cells and hydrogen joint undertaking). Она призывает к активному использованию водорода в рамках энергетического перехода и инвестированию в водородные проекты на общую сумму 1,8 млрд евро в ближайшие пять лет. Две провинции Нидерландов, Гронинген и Дренте, планируют совместно создать на своих территориях «Водородную долину» — проект, основанный на использовании водорода, получаемого из воды с помощью возобновляемых источников энергии. Он включает 33 конкретных проекта, среди которых:
В проекте будут участвовать Shell, Nuon, Engie, BioMCN (производитель биометанола), Gasunie и другие компании.
В Великобритании начинается пилотный проект, в рамках которого водород будет добавляться в трубопроводный газ, используемый для отопления. Сначала этот эксперимент затронет 130 домов. В случае успеха он будет расширен.
На другом конце света — в Чили — в 2017 году компания Enel Green Power запустила первую в мире стопроцентно чистую коммерческую микросеть электроэнергии на водороде. Работу сети обеспечивает комплекс гибридных накопителей, состоящих из солнечной электростанции, а также системы водородных и литиевых батарей.
Серый, голубой, зеленый
Несмотря на обширную географию и разношерстность данных проектов, все они упираются в необходимость промышленного производства водорода, поскольку в чистом виде в природе этот газ не встречается. Большинство этих проектов являются энергозатратными и далеко не все из них позволяют избежать «углеродного следа», что приводит к сохранению большого объема выбросов в атмосферу.
Химическая формула паровой конверсии
В последнее время эту технологию пытаются усовершенствовать за счет строительства установок по улавливанию и хранению углекислого газа, что превращает проекты из «серых» в «голубые». Однако это приводит к увеличению капитальных затрат по ним до 80% и росту примерно в полтора раза стоимости получаемого водорода. На текущий момент в мире реализуется три проекта с интеграцией установок по улавливанию углекислого газа в проекты по производству водорода — это Port Arthur в США, Quest в Канаде и Tomakomai в Японии. Кроме того, в Австралии был подготовлен проект японской компании Kawasaki по производству водорода из синтетического газа, который в свою очередь получается в процессе газификации бурого угля. Водород будет на специальных танкерах доставляться в Японию. Образовавшийся CO2 будет улавливаться и закачиваться в пласт. Невысокая цена австралийского угля и простота его добычи позволяет сделать данный проект рентабельным.
Существует еще один способ получения водорода — электролиз воды. Данная технология позволяет получать водород с минимальным углеродным следом, однако она требует и больших энергетических затрат. Этот способ производства водорода часто совмещают с проектами на возобновляемых источниках энергии, такой водород называют «зеленым».
Электролиз воды
По данным МЭА, в течение последних 10 лет в среднем в мире вводили в эксплуатацию около 10 МВт электролизеров ежегодно. В 2018 году введено уже 20 МВт, а до конца 2020 года ожидается ввод еще 100 МВт.
Но у этого метода есть несколько существенных недостатков. Во-первых, выделяемый таким образом водород является очень дорогим. Он более чем в три раза дороже водорода, произведенного путем конверсии метана. Кроме того, метод электролиза водорода требует больших затрат воды. Так, расширение применения этой технологии, по данным МЭА, может потребовать до 617 млн кубометров чистой воды в год. Такие объемы могут позволить себе далеко не все регионы мира.
Кроме того, существует вариант использования водорода в смеси с метаном. Это позволяет снизить выбросы парниковых газов на 8-15 % по сравнению с использованием чистого метана. Подобный подход уже применяется в ряде европейских стран.
Исследования, проведенные европейскими производителями оборудования, показывают, что некоторые виды современных промышленных газовых турбин уже способны сжигать топливную смесь, содержащую до 50 — 60 % водорода. Правда, в Европе до сих пор нет единых нормативов, регулирующих предельные уровни водорода в газотранспортных системах, что затрудняет массовое применение такого подхода.
Поэтому весь научный мир продолжает искать способы удешевления производства водорода наравне с возможностями широкомасштабного использования подобных технологий.
Российский след против углеродного
Российский газовый концерн «Газпром» предложил миру свое видение развития производства водорода, который имеет ряд значительных преимуществ. Он основан на применении пиролиза и плазмохимического метода, что позволяет разлагать метан на водород и твердый углерод. Последний является ценным материалом для промышленного и строительного секторов, электротехники и электроники. В отличие от газообразной двуокиси углерода твердый углерод легко хранится, он нетоксичен. Выделение твердого углерода в рамках производства водорода позволит не только снизить вредные выбросы, но и получать дополнительный доход.
Пиролиз метана и плазмохимические методы получения водорода из природного газа не имеют прямых выбросов СО2. Эти методы предполагают использование метана, но с учетом, что углеродный след поставок российского газа минимален, то предложенный способ производства водорода смело можно называть «зеленым». Тем более, что он предполагает более низкие затраты на энергию по сравнению с электролизом воды.
По словам руководителя «Центра водородных энергетических технологий» Литовского энергетического института Дарюса Мильчуса, у производства водорода с помощью пиролиза есть еще одно значимое преимущество — получаемый газ по цене сопоставим с водородом, производимым при паровой конверсии.
«Производство водорода без выбросов СО2 из метана могло бы стать ценным решением для достижения климатических целей ЕС на 2030 и 2050 годы при более низких затратах, поскольку себестоимость производства водорода с использованием технологий пиролиза может быть аналогична цене водорода, получаемого в результате парового риформинга в сочетании с секвестрацией СО2. Оно также может быть почти в 3 раза выгоднее по сравнению с технологиями электролиза воды», — сказал Дарюс Мильчус. — Кроме того, в качестве побочного продукта реакции можно было бы производить высококачественный и дорогостоящий технический углерод для применения в различных областях (резиновая промышленность, пластмассы, строительство жилья и т. д.). Это, очевидно, даст новые возможности на рынке. Наконец, производство водорода без выбросов СО2 из метана поможет сохранить рабочие места в нефтегазовой промышленности, одновременно создавая новые рабочие места, связанные с производством водорода на месте по мере необходимости«.
«Масштабное внедрение этой технологии позволит производить «зеленый» водород в больших количествах, следовательно, себестоимость водорода за литр или килограмм будет снижена и станет конкурентоспособной по сравнению с водородом, получаемым через паровой риформинг метана. Водород можно дополнительно смешивать с природным газом, образуя так называемый Hythane, эта газовая смесь обладает улучшенными энергетическими характеристиками по сравнению с чистым природным газом», — заявил «Глобальной энергии» адъюнкт-директор программы «Новые технологии для энергетики» комиссии по альтернативным источникам энергии и атомной энергии Франции Этьен Бойер. — Если такие процессы, продвигаемые «Газпромом», позволят достичь высокой чистоты, то он сможет открыть новые рынки сбыта. В качестве примера в области мобильности можно привести развертывание крупной системы водородных топливных элементов, способных приводить в движение поезда в неэлектрифицированном районе (вместо использования дизельных тепловозов). Равно как и грузовые корабли, которые в настоящее время используют низкокачественное топливо для своих тепловых двигателей«.
Впрочем, отмечают эксперты, как всякий новый метод, технология пиролиза при производстве водорода требует некоторых технических доработок.
По словам Мильчуса, необходимо провести дополнительные исследования по поиску нового высокоэффективного катализатора для одноступенчатых реакций разложения метана.
Бойер отмечает, что данный метод требует оптимизации затрат на энергоресурсы и изучение возможностей по привлечению к его реализации атомных электростанций или возобновляемых источников энергии.
«Пиролиз или плазмохимический процесс являются энергоемкими, так как они протекают при высокой или очень высокой температуре (т.е. плазме). Кроме того, технология плазменной химии имеет довольно низкий коэффициент преобразования. Таким образом, важным и ключевым условием является наличие низкоуглеродного источника энергии для работы пиролиза и плазменной технологии: атомная энергия или возобновляемые источники энергии», — сказал он.
Эти задачи могут быть решены за счет внедрения комплексных водородных проектов, начиная от развитой системы газопроводов и строительства электростанций до расширения применения водорода в мировой экономике.
Как отметил декан инженерного факультета Имперского колледжа Лондона Найджел Брэндон, водородное топливо может сыграть важную роль в переходе к системе с нулевым выбросом углекислого газа наряду с низкоуглеродной электроэнергией, особенно для секторов с высокими выбросами, таких как промышленность, химическая промышленность и транспортные перевозки на больших расстояниях. Так что масштабное внедрение водородных технологий вряд ли заставит себя ждать.
Источник: Ассоциация «Глобальная энергия»