Герцовка звука на что влияет
Записывая звук, выбираем оптимальную частоту. Полезная информация
Не только новичкам, но и некоторым энтузиастам, занимающихся звуком много лет, покажется откровением тот факт, что банальный процесс записи сопровождается сложнейшими физическими явлениями. Одним из таковых называют дискретизацию. Согласно определению, она представляет собой процесс преобразования непрерывной функции в дискретную. Людям, далёким от науки, это понять сложно, тем более, здесь задействована квантовая физика – самая сложная из существующих на сегодняшний день. Но профессиональные звукорежиссёры, например, работающие в московской студии звукозаписи «Интервал», знают, что такое частота дискретизации звука, какая лучше применима в тех или иных случаях. Почему? Потому что от этого явления зависит конечное качество записываемой музыки. В кассетно-плёночный период эти нюансы, ввиду ограниченной технической оснащённости, опускались. Но в современном высокотехнологичном цифровом мире частота дискретизации звука имеет значение при создании музыки и демонстрации её слушателям.
Детализация понятий
Что такое разрядность и частота дискретизации, какая лучше? Ответ на данный вопрос, несмотря на сложность природы этих явлений, получить можно. При этом нет необходимости штудировать учебники по физике. Достаточно вспомнить, что советскими полуподпольными звукорежиссёрами, записывающими рок и другую музыку, эти показатели определялись на интуитивном уровне. Дискретизацию ещё называют сэмплированием. Это определение более понятно для музыкантов. Её частота подразумевает интенсивность процессов в тот момент, когда аналоговый сигнал преобразуется в цифровой. Среди них хранение данных, конвертация, и непосредственно оцифровка.
Частота дискретизации измеряется в герцах. Ориентиром в её изучении является теорема Котельникова. Её автор раскрывает суть дискретизации. Согласно теореме, она ограничивает интенсивность оцифрованного сигнала до половины собственной величины.
Частота дискретизации. В чём её значение для звукозаписи
Дискретизация по времени – это процесс, который непосредственно связан преобразованием аналогового сигнала в цифровой. Наряду с ней происходит квантование данных по амплитуде. Дискретизация по времени означает измерение сигнала в момент всей его передачи. В качестве единицы берётся один сэмпл. Если на словах это не совсем понятно, то на примере выглядит более убедительно. Допустим, частота дискредитации равняется 44100 Гц – та самая, которая применялась на аудио-CD. Это означает, что сигнал измеряется 44100 раз в течение одной секунды.
Аналоговый сигнал по своей насыщенности всегда превосходит цифровой. И его преобразование – это неизбежная потеря в качестве. Частота дискретизации служит своеобразным ориентиром: чем она выше, тем ближе качество цифрового звука к аналоговому. Это явственно просматривается в списке ниже. Он показывает, какая частота звука лучше. Изучая его, вы увидите непосредственную взаимосвязь дискретизации и качества трека:
Список чётко указывает на то, какая частота звука лучше. К тому же технологии на месте не стоят, и появляются новейшие форматы. Но прежде чем строить далеко идущие планы, следует учесть один очень весомый нюанс. Его суть проста: чем выше частота дискретизации, тем сложнее её достичь технологически. Для этого необходимо:
Учитывая вышеизложенную информацию, неудивительным является тот факт, что частота звука, равная 44100 Гц, продолжает оставаться наиболее востребованной и сегодня. Она десятилетиями удовлетворяет даже самые взыскательные запросы к качеству, и вместе с тем имеются все технические возможности для её достижения. Последний фактор является определяющим как для рядовых пользователей, так и для большинства звукозаписывающих студий. Даже зная, какая частота звука лучше, чтобы достигнуть её, необходимо позаботиться о технической оснащённости.
Что такое частотный диапазон в колонках и какой лучше?
Всем привет! Сегодня поговорим о том, какой частотный диапазон колонок лучше и как влияют воспроизводимые частоты на качество звука. Постараюсь объяснить все простыми словами, однако не гарантирую, что это получится в полной мере.
Немного теории
Звук – распространение механических колебаний в газообразной или жидкой среде. Как у любой волны, у звука есть такие параметры как амплитуда (характеризует громкость) и частота (характеризует тональность).
Ухо среднестатистического человека способно улавливать звук с частотой от 16-20 Гц до 15-20 кГц. В свою очередь, этот диапазон имеет три «ступеньки»:
Чем выше частота колебаний, тем выше тон звука. Например, шмель, который машет крыльями медленно, гудит, а комар, частота взмахов крыльев которого существенно выше, мерзко пищит, затаившись во тьме.
Звук ниже диапазона слышимости называют инфразвуком, от 1 ГГц ультразвуком. Человеческий слух их не воспринимает, однако такие звуки с большой амплитудой могут оказывать влияние на организм.
Такой диапазон в полной мере воспринимает человек с идеальным слухом. В условиях постоянного шумового фона, способность воспринимать весь спектр частот, со временем ухудшается.
Кроме того, с возрастом почти каждый человек подвержен старческой тугоухости, когда не воспринимается звук высокой частоты.
Биологически так обусловлено, что женщины лучше воспринимают высокие частоты, а также лучше различают интонации и тональности, на что влияет необходимость заботы о потомстве.
По этой же причине большинство представительниц прекрасного пола сложно обмануть – они способны уловить любую фальшь в голосе. Также стоит отметить, что у женщин слух начинает ухудшаться к 40 годам, тогда как у мужчин этот процесс стартует с 30.
Применительно к колонкам, интерес представляют, в первую очередь, звуки человеческой речи и музыка. Эстетов, слушающих звуки дикой природы на компьютере, существенно меньше по сравнению с киноманами и меломанами.
Количество каналов
Диапазон хороших колонок во многом зависит от количества каналов. Динамики разного размера способны воспроизводить только определенный диапазон частот. При этом наблюдается такая закономерность: чем больше диаметр, тем более басовито может «гудеть» такой излучатель.
Для того, чтобы передать звуковые частоты в полной мере, их разделяют по каналам, оснащая каждую несколькими динамиками под каждый диапазон. Сегодня самыми распространенными являются:
Это касается не только стереофонических систем, но колонок 2.1. Разница лишь в том, что массивный НЧ динамик в последнем случае вынесен в отдельный корпус. Замечено, что звучит такая стереосистема лучше, так как «бочка» обычно располагается отдельно и не перебивает звук СЧ и ВЧ излучателей.Это же справедливо по отношению к колонкам 5 1. Конструкция фронтальных и тыльных колонок у них обычно не различается, поэтому они воспроизводят те же звуковые частоты.
Впрочем, на позиционирование источника звука при просмотре фильма на ПК или домашнем кинотеатре, это никак не влияет, а именно для этого и устанавливается такая акустика.
Амплитудно-частотная характеристика
В этой теме нельзя не упомянуть такое понятие как АЧХ. Что это такое? Это диаграмма, которая характеризует зависимость амплитуды звука от его частоты. По ней можно определить, на каких именно частотах колонка сможет играть громче, а на каких тише.
Идеальная диаграмма выглядит как прямая линия с небольшим спуском в начале и подъемом в конце. Увы, добиться таких показателей сложно, поэтому такой диаграммой обладают только акустические системы Hi-End класса.
В остальных случаях выбирать колонки рекомендую по АЧХ, в зависимости от того, какому звуку вы отдаете предпочтение:
На закономерный вопрос как изменить АЧХ акустической системы, единственный адекватный ответ – перепаять самостоятельно, заменив базовые динамики на более подходящие. Впрочем, многие меломаны знают, как увеличить высокие частоты и убрать басы.Первый способ – воспользоваться регуляторами на самой акустической системе. Если таковые не предусмотрены конструкцией, рекомендую слушать музыку с помощью проигрывателя со встроенным эквалайзером – например, WinAMP или AIMP.
Итак, на что влияет АЧХ мы разобрались. Также хочу отметить, что чаще всего в сопроводительной документации к акустике бюджетного сегмента, такая диаграмма не приводится.
Встречается она в среднем классе и более дорогих устройствах. Впрочем, многие производители приводят все необходимые данные по каждому девайсу на официальном сайте.
Какие же колонки выбрать
Итак, думаю вы уже поняли, что на ответ как изменить диапазон воспроизводимых частот без вмешательства «очумелых» ручек, ответ «никак». Что это значит? То, что выбирать придется из доступного на рынке, если неохота «заморачиваться».
В характеристиках многих акустических систем указывается диапазон от 20 Гц до совершенно заоблачных значений – 35 кГц и иногда даже выше. Это не более чем маркетинговая уловка – все равно, вряд ли, вы расслышите звук с частотой более 20 кГц. Поэтому покупайте колонки, работающие именно в этом диапазоне – не прогадаете.
О том, что такое мощность акустической системы, можно почитать вот здесь. Также советую почитать о лучших производителях колонок. Буду признателен всем, кто поделится этой публикацией в социальных сетях. До завтра!
Воспроизведение звука и музыки: какие частоты используют и зачем их ограничивают
Содержание
Содержание
Собаки слышат до 45 кГц, кошки — до 79 кГц, дельфины и летучие мыши — выше 100 кГц, а человеческое ухо едва в состоянии услышать несчастные 20 Кгц, а чаще — всего 16-17 кГц. Почему все так? И зачем тогда гордые значения воспроизводимых частот типа «16 Гц — 40 кГц» на аудиотехнике? На каких частотах вообще звучат музыкальные инструменты и человеческий голос? Об этом ниже.
Что такое частота звука?
Звуковая волна, как и любая другая, имеет две главные характеристики — амплитуда и частота. Если к поплавку на озере привязать карандаш и устроить так, чтобы он чертил на движущейся бумаге свою траекторию (как кардиометр или сейсмограф), то получится синусоида:
Почему мы слышим хуже кошки?
Звуковые волны могут иметь любую частоту колебаний, но человеческое ухо улавливает их в диапазоне примерно от 20 Гц до 20 Кгц. На самом деле, в идеальных лабораторных условиях некоторые слышат аж до 12–16 Гц, а те, кто не слышит, могут уловить низкочастотные колебания телом. А вот с высокими частотами все хуже. Лишь немногие смогут уловить 20 кГц, большинство же слышат лишь до 16-17 кГц, и с возрастом это значение падает до 8–10 кГц.
Более того, человеческое ухо наиболее чувствительно к диапазону от 2 до 5 кГц — это так называемая зона разборчивости. Чувствительность к волнам на разных участках спектра различается. Любой может записаться на аудиометрию — обследование слуха, чтобы получить аудиограмму — кривую чувствительности своих ушей по частотам. Правда, в медицине она измеряется в диапазоне от 125 Гц до 8 кГц, но даже в таком укороченном отрезке у всех будет видна неравномерность слуха. Чувствительность ушей зависит даже от времени дня и настроения.
Кроме того, воспринимаемая громкость зависит от частоты звука. К примеру, на малой громкости низкие и высокие частоты слышны хуже. Это как раз следствие того, что человеческое ухо заточено под средние частоты, позволяющие распознавать речь. Эффективная коммуникация — одно из главных эволюционных преимуществ человека, поэтому эволюция и наделила нас тем слуховым диапазоном, что мы имеем.
В свою очередь, эволюционные преимущества других животных могут отличаться. К примеру, летучие мыши ориентируются в пространстве, издавая и улавливая ультразвук, поэтому и слышат до 200 кГц. А большая восковая моль часто становится добычей летучих мышей, поэтому ей пришлось развить слуховой диапазон до 300 кГц, чтобы избегать встреч с ужасом, летящим на крыльях ночи. Кошка слышит ультразвук, потому что многие грызуны общаются на высоких частотах, а киты слышат инфразвук, чтобы общаться самим, потому что низкочастотные волны лучше передаются на большие расстояния.
Фундаментальная частота голоса мужчины — в районе 80-150 Гц, женщины — 150-250 Гц. Однако телефонные линии обрезают в звуке все, что ниже 300 Гц и выше 3,5 кГц. Почему? Потому что кроме фундаментальной частоты есть еще обертона. Это призвуки, которые появляются из-за того, что у человека звучат не только голосовые связки, но и гортань, голова, да и все тело целиком. Обычно они находятся выше основного тона, поэтому так и называются.
У мужчин обертона голоса достигают 4 кГц, у женщин — 5-6 кГц. Они сильно влияют на звучание, благодаря им мы можем отличить одного человека от другого и даже определить по голосу его телосложение. Соответственно, именно они, а не фундаментальный тембр, важны для телефонных переговоров.
Частоты музыки
Бас гитара, как и контрабас, обычно настраиваются в ми контроктавы — это 41 Гц, гитара — на октаву выше, 82 Гц. Скрипка, один из самых писклявых инструментов в оркестре, начинается с соль малой октавы (196 Гц) и заканчивается на ля четвертой октавы (440 Гц). Диапазон большинства фортепиано — от ля субконтроктавы (27,5 Гц) до до 5 октавы (523 Гц).
Как можно заметить, диапазон большинства музыкальных инструментов находится довольно низко по спектру, не выше 4-5 кГц. Зачем тогда вообще что-то выше условных 5 кГц в аудиотехнике?
К слову, первые граммофоны умели воспроизводить от 170 до 2 000 Гц, а с появлением электронной записи их диапазон расширился на 2,5 октавы — от 100 до 5 000 Гц. То есть как раз, чтобы воспроизводить диапазон голоса и большинства инструментов в оркестре. А другой музыки в 20-х годах прошлого века и не было.
Однако, как и в случае с человеческим голосом, решающую роль играют обертона. Они также зависят от «телосложения» инструмента — его габаритов, плотности дерева или металла, массы и т. п. Ведь когда нажимаешь клавишу ля на фортепиано — звучит не чистый синус, а весь инструмент целиком, включая и ноты ля в других октавах — они начинают колебаться в унисон. На этом эффекте основано звучание ситара — у него есть дюжина резонирующих струн, производящих характерный звон.
Более того, даже части самой струны, кратные ее длине, начинают колебаться в унисон. К примеру, половина, треть, четверть, пятая части струны будут издавать обертона на октаву или несколько октав выше фундаментальной частоты.
Обертона, которые кратны основному тону, называют гармоническими, или, попросту, гармониками. Именно они придают инструменту свой уникальный характер звучания, именно в них вся красота, именно количеством обертонов хороший инструмент отличается от плохого. Благодаря обертонам и гармоникам музыка предстает перед нами во всей полноте. Для них и нужен этот, на первый взгляд, пустой участок от 5 до 20 кГц.
Частотный диапазон у аудиотехники
Производители аудиотехники всегда стремились расширить диапазон воспроизводимых частот, чтобы добиться красоты и величественности звучания настоящих инструментов. Во времена ламповой техники верхняя граница едва достигала 12 кГц. Магнитная запись повысила порог до 15 кГц, но даже этот показатель могла выдать только студийная магнитная пленка с высокой скоростью протягивания ленты. У бытового катушечного магнитофона верхняя граница воспроизводимых им частот падает до 10–12 кГц, а в кассетных магнитофонах — и того меньше.
Все изменилось с появлением цифровой записи и CD, позволивших кодировать весь диапазон от 20 Гц до 20 кГц. Но вновь откатилось с появлением интернета и mp3, срезающих значительную часть верхов во имя меньшего объема файлов.
При этом сделать колонки, воспроизводящие весь диапазон, оказалось проще. Одни из первых студийных мониторов на рынке, Altec 604, в некоторых модификациях уже могли воспроизводить от 20 Гц до 22 кГц, а это 70-е годы прошлого века. Большинство современных колонок без проблем воспроизводят до 20 кГц, а нижняя планка зависит от диаметра вуфера, конструкции фазоинвертора и наличия саба.
Также нередко встречаются колонки с диапазоном до 30–40 кГц. Но нужно всегда смотреть на АЧХ, чтобы понять, на какой громкости они могут эти частоты воспроизводить, и будет ли их вообще слышно.
Тем не менее, многие обладатели колонок и наушников с расширенным частотным диапазоном (от 5/10/15 Гц до 30/40/50 кГц) утверждают, что они звучат ярче и/или глубже. Правда, чтобы это услышать, нужно воспроизводить музыку, в которой есть соответствующая информация. К примеру, ютуб режет все, что выше 16 кГц, mp3 даже в 320 bpm режет до 19 кГц, а стандарт CD (16 bit 44.1 кГц) срезает все, что выше 22 кГц. Расширенным диапазоном могут похвастаться стандарты типа DVD-Audio, Super Audio CD, DSD и некоторые другие, но музыки в таких форматах не так уж и много.
Если же наушники еще и беспроводные, то диапазон частот дополнительно ограничен кодеками Bluetooth. Даже Aptx-HD имеет потолок в 19 кГц, и только LDAC от Sony умеет транслировать музыку в высоком разрешении, но многие жалуются на слабое качество сигнала в таком режиме.
Жанры музыки и частоты
Стоит сказать, что не всегда гармоники и обертона делают музыку лучше. Слышимый диапазон можно представить себе, как тесный лифт, инструменты — как его посетителей, а обертона и гармоники — как их вес и габариты. В этом случае оркестр будет похож на группу детей — большинство инструментов не обладают большим диапазоном и занимают строго свое место, поэтому их может поместиться много.
Но в той же рок-музыке звучание инструментов многократно усиливается, обертонов становится слишком много, это больше похоже на сумоистов в пуховиках. Чтобы уместить их в лифт, нужно убрать лишнее — снять пуховики. Этим занимается звукорежиссер — он ограничивает частотный диапазон каждого инструмента фильтрами хай-пасс и лоу-пасс, а с помощью эквалайзера убирает ненужные и выделяет нужные гармоники.
К примеру, электрогитары, вокал и рабочий барабан обычно ограничивают от 100–150 Гц до 8–12 кГц, бас и бочку — от 20–40 Гц до 6–10 кГц и т. п. Да, звучание каждого инструмента становится менее богатым, но за счет этого в общем миксе они не мешают, а дополняют друг друга.
Появление синтезаторов дало возможность сделать чистый синус без обертонов, и уже потом обогатить его нужным количеством гармоник. Это позволило создать очень густой и четкий бас глубиной до 20 Гц, что невозможно проделать с живыми инструментами.
Заключение
Теперь понятно, почему музыка в высоком разрешении — это по большей части всякий джаз, кантри и классика, где сведение выполняется по минимуму, либо вообще отсутствует. Вполне возможно, что такая музыка в ультравысоком разрешении будет звучать максимально живо и естественно в наушниках, играющих от 4 Гц до 51 кГц.
В некоторых жанрах электронной музыки также встречается бас в районе инфразвука. Однако чаще всего электроника, рок и метал не содержат информации за пределами слышимого диапазона. Там все лишние обертона заботливо вырезал господин звукорежиссер, а те, что как-то выжили, добил мастеринг-инженер. Зато осталась самая сочная часть, которую будут отлично воспроизводить любые колонки и наушники.
Частоты от 15 кГц и выше: зачем и почему
Последнее время, перечитывая на ночь спецификации, я диву даюсь, в какие ультразвуковые дали устремились современная акустика, усилители и источники. Во времена, когда пустые сигаретные пачки Marlboro и рекламные буклеты фирмы Technics было принято передавать по наследству, вся роскошь аудиовеликолепия укладывалась в заветные 20 Гц – 20 кГц.
Сегодня, если ты будешь кокетничать, как Rolls-Roys с мощностью двигателя, если не предъявишь контрастность картинки один к миллиону, тебя продадут с молотка. На этом фоне консервативные производители стерео выглядят скромнягами: подумаешь, в колонках теперь указывают верхнюю границу в 30 кГц, а в усилителях подняли планку всего-то в пять раз — до 100 кГц. Что все это значит, для чего сделано и как к этому относиться?
Так называемые «высокие частоты» имеют долгую историю и вошли, можно сказать, в область фольклора. Любой бесконечно далекий от мук выслушивания кабеля охламон в состоянии высказать претензию — «что-то высоких маловато». Во времена магнитных перезаписей заветного «цыканья» катастрофически не хватало, а то что имелось — таяло на суровых механизмах отечественных кассетников, как снег по весне. Практически все усилители имели две регулировки. Баску служила ручка о ста герцах, а чтобы все «звучало по-человечески», выкручивался на максимум второй регулятор полосы в 10 кГц.
Для изощренных любителей корежить амплитудно-частотную характеристику выпускались отдельные эквалайзеры, в которых ползунки, как правило, ставились галочкой, задирая края диапазона и проваливая средние частоты. С включенным «садомазоэквалайзером» велась и магнитная перезапись. Насчет искажений фазы никто не парился. Сегодня, если верить спецификациям на компоненты, проблемы с высокими частотами остались давно позади. От себя могу сказать, что с цифровым контентом по крайней мере характеристики никуда не уплывут, и музыка будет звучать стабильно хорошо. Или стабильно плохо, ха-ха. Так все-таки, как относиться к бойким характеристикам от нуля до ста килогерц?
По правилам хорошего тона к цифрам частотного диапазона следует соблюдать и указывать неравномерность (в децибелах). Не все утруждаются это делать, особенно грешат производители наушников. Приведенные в спецификациях границы частотного диапазона сами по себе ничего не говорят, лишь указывают, что к данному устройству был приложен технический сигнал так называемого «розового шума». Можно, не указывая неравномерность, и радиоприемнику записать хоть от нуля до 500 кГц.
Для адекватного, неокрашенного звучания важно, чтобы отклик был как можно более линеен, т.е. имел одинаковый уровень на каждой полосе. Для усилителей и источников предельная неравномерность составляет плюс-минус 0,5 дБ, для акустики — 3 дБ.
Начиная с 90-х в хайфае убрали регуляторы тембров от греха подальше. И правильно сделали, кстати говоря, хотя именно в АС они бы не помешали. При установке в реальном помещении колонки демонстрируют куда большие, чем 3 дБ пики/провалы АЧХ, и советы выровнять некрасивый звук сетевым кабелечком выглядят сущим издевательством.
Официально считается, что человек в состоянии различать звуки от 20 Гц до 20 кГц. Это совпадает с порогом воспроизведения компакт-диска — половина частоты дискретизации 44,1 стерео сигнала, т.е. 22,05 кГц. В хайрезах 24/192 значение верхнего предела теоретически может достигать соответственно 96 кГц, чего на практике никто не делает: никто не хочет семплировать пустоту, раздувая и без того немалый файл. В настоящее время наибольшее хождение получили как коммерческие, так и самодельные записи (например, виниловые рипы) в 24 бит/96 кГц. До 48 кГц частотного диапазона можно вместить что угодно и кого угодно. Да только кто туда пойдет?
Если вы закажете у районного сурдолога процедуру проверки слуха, то, как правило, получите аудиограмму до 8 кГц, а свыше прибор и не станет рисовать, он на это не рассчитан. Врачами считается, что для нормальной жизни больше 8 кГц и не надо. Знаменитый, так называемый «ультразвуковой» прикол для собачек на финальной канавке грампластинки 1967 года был записан на частоте всего-то 15 кГц. Вы можете раздобыть тестовые сигналы и попробовать расслышать ВЧ, начиная с десятки. Для кого-то будет неприятным сюрпризом остановиться на 16 кГц, но не спешите расстраиваться.
Знаменитый, так называемый «ультразвуковой» прикол для собачек на финальной канавке грампластинки 1967 года был записан на частоте всего-то 15 кГц
За исключением духового органа (10 кГц), который также умеет издавать и самые низкие звуки, свыше 4 кГц не играет ни один инструмент, даже флейта-пикколо. Другое дело, обертона: они могут карабкаться повыше — до 16 кГц у вокала, скрипки и пикколо. Область от 14 до 20 кГц и отвечает за создание «воздуха» в фонограмме. А любимое народное «цыкание» тарелочек спокойно уложилось гораздо ниже — в диапазон от 7 до 12 кГц. Вот на все эти некрупные цифры и ориентировались производители стереоаппаратуры 70-х.
А что же тогда находится в HD-записях свыше 20 кГц? Да мало ли что. Говорят, в ультразвуковой области могут залегать какие-то неучтенные ранее, а потому дико ценные обертона, которые человек (особенно такой мнительный, как аудиофил) способен если не слышать, то ощущать. Если посмотреть частотку HD-трека, картина бывает разная. У кого-то видно применение фильтра на тех же сакраментальных 20 кГц, а дальше ничего и нет. У кого-то жизнь наблюдается до 48 кГц. Что это может быть?
Как правило — ультразвуковые шумы квантования, какие-то резонансы, например, системы винилового картриджа. Значит ли это, что аудио 24/96 и выше — обман народа? Совершенно не значит, потому что мы получаем не только расширение частотной полосы, но и вынос ошибок квантования куда подальше, где их не слышно, увеличение запаса динамического диапазона. Проще говоря, HD-фонограмму сложнее испортить при записи, поэтому даже виниловые рипы в домашних условиях на 24/96 звучат более разборчиво и выразительно, чем на стандартных 16/44.1. Так что хоть и слышим мы, дай бог, чтобы до 18 кГц, а музыку лучше слушать в HD-изданиях. Как ни крути компакт-дисками.