ΠΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅Π½ ΠΏΡΡΠΌΠΎΠΉ ΠΎΡΠΌΠ΅ΡΡΡΠ΅ ΡΠ΅ΠΌΡ ΠΌΠΎΠ³ΡΡ ΡΠ°Π²Π½ΡΡΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΈ
ΠΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π΅Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΡΠΎΡΠΌΡΠ»Ρ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Β«yΒ» ΠΎΡ Β«xΒ», Π³Π΄Π΅ Β«xΒ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Β«yΒ» β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° y = kx + b, Π³Π΄Π΅ Ρ β Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, k, b β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠ»Π°. ΠΡΠΈ ΡΡΠΎΠΌ k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, b β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° b β Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΏΡΡΠΌΠ°Ρ ΠΏΠΎ ΠΎΡΠΈ OY, ΡΡΠΈΡΠ°Ρ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ OX, ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ , ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ.
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΎΡΠΌΠ»ΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΠ°Π±Π»ΠΈΡΡ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ»Ρ Π΅Π³ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ β Π·Π° ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠΊΠ²Π΅Π½Π½ΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Β«kΒ» ΠΈ Β«bΒ» β ΡΡΠΎ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ° ΠΈΡ ΠΌΠ΅ΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΡΡΠΎΡΡΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π°: ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ Π΄ΡΠΎΠ±ΠΈ.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
Π€ΡΠ½ΠΊΡΠΈΡ | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«kΒ» | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«bΒ» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = βx + 3 | k = β1 | b = 3 |
y = 1/8x β 1 | k = 1/8 | b = β1 |
y = 0,2x | k = 0,2 | b = 0 |
ΠΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ, ΡΡΠΎ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Β«y = 0,2xΒ» Π½Π΅Ρ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β«bΒ», Π½ΠΎ ΡΡΠΎ Π½Π΅ ΡΠ°ΠΊ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π§ΡΠΎΠ±Ρ Π½Π΅ ΠΏΠΎΠ΄Π΄Π°Π²Π°ΡΡΡΡ ΡΠΎΠΌΠ½Π΅Π½ΠΈΡΠΌ, Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ: Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠΏΠ° Β«y = kx + bΒ» Π΅ΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
ΠΡΠ΅ Π½Π΅ ΡΡΡΠ°Π»ΠΈ? ΠΠ·ΡΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ Π²Π΅ΡΠ΅Π»Π΅Π΅ Ρ ΠΎΠΏΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart!
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π΅ΡΡΡ Π°ΠΊΡΠΈΠΎΠΌΠ°: ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΠ΅ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ. ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠΎΠΉ Π°ΠΊΡΠΈΠΎΠΌΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ: ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° Β«Ρ = kx + bΒ», Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ. Π Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΈΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ y.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = 1 /3x + 2, ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ Ρ = 0 ΠΈ Ρ = 3, ΡΠΎΠ³Π΄Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½Ρ Ρ = 2 ΠΈ Ρ = 3. ΠΠΎΠ»ΡΡΠΈΠΌ ΡΠΎΡΠΊΠΈ Π (0; 2) ΠΈ Π (3; 3). Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°ΠΊΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊ:
Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° Π½Π°ΠΊΠ»ΠΎΠ½ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌ ΡΠΈΡΡΠ½ΠΎΠΊ. ΠΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²ΠΏΡΠ°Π²ΠΎ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ. ΠΡΠΈΡΠ΅ΠΌ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
Π ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ b = 3, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π ΡΡΠΎΡ ΡΠ°Π· Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²Π»Π΅Π²ΠΎ. Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b ΡΠ°Π²Π΅Π½ ΡΡΠ΅ΠΌ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π’Π΅ΠΏΠ΅ΡΡ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ k ΡΠ°Π²Π½Ρ. ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅.
ΠΡΠΈ ΡΡΠΎΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b ΡΠ°Π·Π»ΠΈΡΠ½Ρ, ΠΈ ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠΊΠ°Ρ :
ΠΡΡΠΌΡΠ΅ Π±ΡΠ΄ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ρ Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
ΠΠΎΠ΄ΡΡΠΎΠΆΠΈΠΌ. ΠΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b, ΡΠΎ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ, ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b.
ΠΡΠ»ΠΈ k 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
ΠΡΠ»ΠΈ k > 0 ΠΈ b > 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0 ΠΈ b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ
Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ ΠΈ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π²ΡΡΠ΅. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ!
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ A (1; 1); B (2; 4).
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Β« y = kx + b Β» ΠΈ Π΅Ρ Π³ΡΠ°ΡΠΈΠΊ
ΠΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = kx Β» Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ·ΡΡΠΈΡΠ΅ ΡΡΠΎΠΊ
Β«Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ½ΠΊΡΠΈΡ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅Β» ΠΈ Β«ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΡΡΠ½ΠΊΡΠΈΡΒ».
Π€ΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° Β« y = kx + b Β» Π½Π°Π·ΡΠ²Π°ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ.
ΠΠΌΠ΅ΡΡΠΎ Β« k Β» ΠΈ Β« b Β» ΠΌΠΎΠ³ΡΡ ΡΡΠΎΡΡΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° (ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ Π΄ΡΠΎΠ±ΠΈ).
ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ Β« y = kx + b Β» β ΡΡΠΎ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²ΠΎ Π²ΡΠ΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π³Π΄Π΅ Π²ΠΌΠ΅ΡΡΠΎ Β« k Β» ΠΈ Β« b Β» ΡΡΠΎΡΡ ΡΠΈΡΠ»Π°.
ΠΡΠΈΠΌΠ΅ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΈΠΏΠ° Β« y = kx + b Β».
Π€ΡΠ½ΠΊΡΠΈΡ | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β« k Β» | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β« b Β» | ||||
---|---|---|---|---|---|---|
y = 5x + 3 | k = 5 | b = 3 | ||||
y = βx + 1 | k = β1 | b = 1 | ||||
y =
x β 2 | k =
| b = β2 | ||||
y = 0,5x | k = 0,5 | b = 0 |
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ ΠΎΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΡΠ½ΠΊΡΠΈΡ Β« y = 0,5x Β» Π² ΡΠ°Π±Π»ΠΈΡΠ΅. Π§Π°ΡΡΠΎ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΎΡΠΈΠ±ΠΊΡ ΠΏΡΠΈ ΠΏΠΎΠΈΡΠΊΠ΅ Π² Π½Π΅ΠΉ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β« b Β».
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Β« y = 0,5x Β», Π½Π΅Π²Π΅ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β« b Β» Π² ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅Ρ.
ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Β« y = kx + b Β»
ΠΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ Π°ΠΊΡΠΈΠΎΠΌΡ (ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅ ΡΡΠ΅Π±ΡΠ΅Ρ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²), ΡΡΠΎ ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΠ΅ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ.
ΠΡΡ
ΠΎΠ΄Ρ ΠΈΠ· Π°ΠΊΡΠΈΠΎΠΌΡ Π²ΡΡΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π°
Β« Ρ = kx + b Β» Π½Π°ΠΌ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΡΠ΄Π΅Ρ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β2x + 1 Β».
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y Β» Π΄Π»Ρ Π΄Π²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Β« x Β». ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΌΠ΅ΡΡΠΎ Β« x Β» ΡΠΈΡΠ»Π° Β« 0 Β» ΠΈ Β« 1 Β».
ΠΡΠ±ΠΈΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΠΌΠ΅ΡΡΠΎ Β« x Β», Π»ΡΡΡΠ΅ Π±ΡΠ°ΡΡ ΡΠΈΡΠ»Π° Β« 0 Β» ΠΈ Β« 1 Β». Π‘ ΡΡΠΈΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ Π»Π΅Π³ΠΊΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΡΠ°ΡΡΠ΅ΡΡ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Β« x Β» ΠΈ Β« y Β» β ΡΡΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ Β« y = β2x + 1 Β» Π² ΡΠ°Π±Π»ΠΈΡΡ.
Π’ΠΎΡΠΊΠ° | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πx Β» (Π°Π±ΡΡΠΈΡΡΠ°) | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πy Β» (ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°) |
---|---|---|
(Β·)A | 0 | 1 |
(Β·)B | 1 | β1 |
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΡΡΠΌΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ. ΠΡΠ° ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ ΡΠ²Π»ΡΡΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β2x + 1 Β».
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π°
Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Β« y = kx + b Β»
ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β». ΠΠ°ΠΉΡΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ:
ΠΠ½Π°ΡΠ°Π»Π΅ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β».
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»Π°, ΠΏΠΎ ΠΊΠΎΡΠΎΡΡΠΌ ΠΌΡ ΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΡΠ΅. ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β» Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ.
ΠΡΠ±Π΅ΡΠ΅ΠΌ Π΄Π²Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΡ ΡΠΈΡΠ»ΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Β« x Β». ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ°ΡΡΠ΅ΡΠΎΠ² Π²ΡΠ±Π΅ΡΠ΅ΠΌ ΡΠΈΡΠ»Π° Β« 0 Β» ΠΈ Β« 1 Β».
ΠΡΠΏΠΎΠ»Π½ΠΈΠΌ ΡΠ°ΡΡΠ΅ΡΡ ΠΈ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ°Π±Π»ΠΈΡΡ.
Π’ΠΎΡΠΊΠ° | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πx Β» | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πy Β» |
---|---|---|
(Β·)A | 0 | y(0) = 2 Β· 0 + 3 = 3 |
(Β·)B | 1 | y(1) = 2 Β·1 + 3 = 5 |
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΠΏΡΡΠΌΠΎΠΉ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ ΡΠ²Π»ΡΡΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β».
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°Π±ΠΎΡΠ°Π΅ΠΌ Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΠΌ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β».
Π’Π΅ΠΌΡ Β«ΠΠ°ΠΊ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΈΒ» Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΡ ΡΠΆΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π»ΠΈ Π² ΡΡΠΎΠΊΠ΅ Β«ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΡΡΠ½ΠΊΡΠΈΡΒ».
Π ΡΡΠΎΠΌΡ ΡΡΠΎΠΊΠ΅ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π²ΡΡΠ΅ Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« y Β» ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Β« x Β» Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ°Π±Π»ΠΈΡΡ.
ΠΠ°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« x Β» | ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Ρ Π³ΡΠ°ΡΠΈΠΊΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« y Β» |
---|---|
β1 | 1 |
2 | 7 |
3 | 9 |
5 | 13 |
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ°Π±Π»ΠΈΡΡ.
ΠΠ°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« y Β» | ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Ρ Π³ΡΠ°ΡΠΈΠΊΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« x Β» |
---|---|
β1 | β2 |
0 | β1,5 |
1 | β1 |
4 | 0,5 |
ΠΠ°ΠΊ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄ΡΡΠ³ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅.
Π§ΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ (ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ ΠΎΡΠΈ Β« Ox Β» Π²ΠΌΠ΅ΡΡΠΎ Β« x Β», Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ ΠΎΡΠΈ Β« Oy Β» Π²ΠΌΠ΅ΡΡΠΎ Β« y Β») ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΠ΅ΡΡ.
β2 = 2 Β· 1 β
1 |
3 |
β2 = 2 β
1 |
3 |
β2 = 1
3 |
3 |
β
1 |
3 |
β2 = 1
2 |
3 |
(Π½Π΅Π²Π΅ΡΠ½ΠΎ)
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΠΌΠΈ
ΠΠ°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» ΠΈ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΎΡΠΌΠ΅ΡΠΈΠΌ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΠΌΠΈ.
ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄Π²ΡΡ
ΡΠΎΡΠ΅ΠΊ
ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β».
Π’ΠΎΡΠΊΠ° | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πx Β» | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πy Β» |
---|---|---|
(Β·)A | 0 | y(0) = β1,5 Β· 0 + 3 = 3 |
(Β·)B | 1 | y(1) = β1,5 Β· 1 + 3 = 1,5 |
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΡΠ΅ΡΠ΅Π· Π½ΠΈΡ ΠΏΡΡΠΌΡΡ. Π’Π΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΌΡ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β».
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΡΠΌΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Ρ ΠΎΡΡΡ Β« Oy Β» (ΠΎΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ) Π½ΡΠΆΠ½ΠΎ:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ Β« x Β» Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» ΡΠΈΡΠ»ΠΎ Π½ΠΎΠ»Ρ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Ρ ΠΎΡΡΡ Β« Ox Β» (ΠΎΡΡΡ Π°Π±ΡΡΠΈΡΡ) Π½ΡΠΆΠ½ΠΎ:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ Β« y Β» Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» ΡΠΈΡΠ»ΠΎ Π½ΠΎΠ»Ρ.
Π§ΡΠΎΠ±Ρ Π±ΡΠ»ΠΎ ΠΏΡΠΎΡΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΠΊΠ°ΠΊΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°ΡΡ ΠΊ Π½ΡΠ»Ρ, Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅ Β«ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈΒ».
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Π΅Π΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ Π³ΡΠ°ΡΠΈΠΊ
ΡΠ΅ΠΎΡΠΈΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ 📈 ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ, Π·Π°Π΄Π°Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y=kx+b, Π³Π΄Π΅ Ρ β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, k ΠΈ b β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠ»Π°, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ. ΠΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Ρ Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Ρ β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²Π·ΡΡΡ Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ ΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ, ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΏΡΡΠΌΠ°Ρ.
Π§ΠΈΡΠ»ΠΎ k Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΏΡΡΠΌΠΎΠΉ.
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΡΡ Π² ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΈΡΠ΅Π» k ΠΈ b.
ΠΡΠΈΠΌΠ΅Ρ β1
ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=2Ρ β 1. ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ Π±ΡΠ»ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ, ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΈ Ρ.Π΄. ΡΠ΄Π΅Π»Π°Π΅ΠΌ ΡΠ°Π±Π»ΠΈΡΡ Π΄Π»Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Ρ ΠΈ Ρ:
ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΏΠΎΠ΄Π±ΠΈΡΠ°Π΅ΠΌ Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π½ΠΈΡ ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΠΎ Π±ΡΠ°ΡΡ ΡΠ°Π²Π½ΠΎΠ΅ Π½ΡΠ»Ρ, Π²ΡΠΎΡΠΎΠ΅, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ 3 (ΠΏΠΎΠ΄Π±ΠΈΡΠ°Π΅ΠΌ Π½Π΅Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠΈΡΠ»Π°).
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΈ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ:
ΠΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ:
Π’Π΅ΠΏΠ΅ΡΡ ΡΡΡΠΎΠΈΠΌ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΎΡΠΌΠ΅ΡΠ°Π΅ΠΌ Π² Π½Π΅ΠΉ ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ Π(0; β1) ΠΈ Π(3;5),
ΠΡΠ°ΠΊ, ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ β ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, Π·Π½Π°ΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊ β Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, ΡΡΠΎ ΠΌΡ ΠΈ Π²ΠΈΠ΄ΠΈΠΌ Π½Π° Π½Π°ΡΠ΅ΠΌ Π³ΡΠ°ΡΠΈΠΊΠ΅.
ΠΡΠΈΠΌΠ΅Ρ β2.
ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ= β3Ρ +4. ΠΡΠ°ΠΊ, Π΄Π΅Π»Π°Π΅ΠΌ ΡΠ°Π±Π»ΠΈΡΡ Π½Π° Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ 0 ΠΈ 2.
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Π·Π½Π°ΡΠΈΡ, ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ ΡΠ±ΡΠ²Π°ΡΡ. Π‘ΡΡΠΎΠΈΠΌ ΡΠ±ΡΠ²Π°ΡΡΡΡ ΠΏΡΡΠΌΡΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ Π(0;4) ΠΈ Π(2; β2).
ΠΡΠΈΠΌΠ΅Ρ β3
ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=4. ΠΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠΈΡΠ»ΠΎ Ρ =0, Π·Π½Π°ΡΠΈΡ, ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΎΠΉ (0;4) ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Ρ . ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=3Ρ . ΠΠ°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΡΡΠ½ΡΠΌ ΡΠ»ΡΡΠ°Π΅ΠΌ, ΠΊΠΎΠ³Π΄Π° ΠΏΡΡΠΌΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΡΡΠΎΠΌΡ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ ΡΡΡΠ½ΠΎ ΠΎΠ΄Π½ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ , Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ 2, ΡΠΎΠ³Π΄Π° Ρ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°Π²Π½ΡΠΉ 6. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ (2;6) ΠΈ (0;0). Π‘ΡΡΠΎΠΈΠΌ ΠΈΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΡΠ΅ΡΠ΅Π· Π½ΠΈΡ ΠΏΡΡΠΌΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π±ΡΠ΄Π΅Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ 3, Ρ.Π΅. ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ°Ρ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π²ΠΈΠ΄Π° y=kx+b. Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b.
Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΏΠΎΠ΄ β3. ΠΡΠ»ΠΈ k 90 0 ) ΡΠ³ΠΎΠ» Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ.Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ (ΠΡ ). ΠΡΠ»ΠΈ b 0. ΠΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΎΡΡΠ°Π²ΡΠΈΠΌΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌ Π ΠΈ Π, Ρ.ΠΊ. ΠΎΠ½ΠΈ ΠΎΠ±Π° Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ Πx ΠΏΠΎΠ΄ ΠΎΡΡΡΡΠΌ ΡΠ³Π»ΠΎΠΌ ( 0 ). Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π²ΡΠ±ΠΎΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ ΠΏΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b.
Π 1-ΠΉ ΠΏΠ°ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² b 0, ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π³ΡΠ°ΡΠΈΠΊΡ Π, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ ΠΡ Π²ΡΡΠ΅ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΡΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡΠΎ ΠΈ ΠΎΡΡΠ°Π²ΡΠ°ΡΡΡ ΠΏΠ°ΡΠ° Πβ2 ΡΠΎΠΆΠ΅ Π²Π΅ΡΠ½Π°.
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΠΈ ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ.
Π€ΡΠ½ΠΊΡΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Π²ΠΈΠ΄Π°:
ΠΡΠ°ΡΠΈΠΊ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ k ΠΈ b.
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π£ΡΠΎΠΊ 17. ΠΠ»Π³Π΅Π±ΡΠ° 7 ΠΊΠ»Π°ΡΡ
Π Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π΄Π°ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄ΠΎΡΡΡΠΏ ΠΊ ΡΡΠΎΠΌΡ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π΅Π³ΠΎ Π² Π»ΠΈΡΠ½ΡΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ, ΠΏΡΠΈΠΎΠ±ΡΠ΅Π² Π² ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π΅.
ΠΠΎΠ»ΡΡΠΈΡΠ΅ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΡΡΠΎΠΊΠ° «ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ»
Β· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ;
Β· Π²ΡΡΡΠ½ΠΈΡΡ, ΠΊΠ°ΠΊ Π·Π°Π²ΠΈΡΠΈΡ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
ΠΠ° ΠΏΡΠΎΡΠ»ΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠ»ΠΈΡΡ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ:
ΠΠ° ΡΡΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ Π²ΡΡΡΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ Π·Π°Π²ΠΈΡΠΈΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΠΎΡΡΡΠΎΠΈΠΌ ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΈ:
Π£ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ k ΡΠ°Π²Π½Ρ, Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b Π½Π΅ ΡΠ°Π²Π½Ρ.
ΠΡΠ΅ ΠΏΡΡΠΌΡΠ΅ ΠΏΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ½ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ ΠΊ ΠΎΡΠΈ ΠΈΠΊΡ ΠΏΠΎΠ΄ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ ΡΠ³Π»ΠΎΠΌ. ΠΡΠΎΡ ΡΠ³ΠΎΠ» Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΈΡΠ»Π° k, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π£ Π΄Π°Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½Ρ. ΠΡΠΈ ΡΡΠΎΠΌ Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Ρ ΠΎΡΡΡ ΠΈΠΊΡ ΡΡΠΏΠΎΠΉ ΡΠ³ΠΎΠ». Π Ρ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Ρ ΠΎΡΡΡ ΠΈΠΊΡ ΠΎΡΡΡΡΠΉ ΡΠ³ΠΎΠ».
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ°, Π³Π΄Π΅ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠ°Π²Π½Ρ ΠΈ ΠΏΡΡΠΌΡΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ, Π·Π΄Π΅ΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄.
ΠΡΠ»ΠΈ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΏΡΡΠΌΡΡ , ΡΠ²Π»ΡΡΡΠΈΡ ΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ Π΄Π²ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠ°Π·Π»ΠΈΡΠ½Ρ, ΡΠΎ ΡΡΠΈ ΠΏΡΡΠΌΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ, Π° Π΅ΡΠ»ΠΈ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ, ΡΠΎ ΠΏΡΡΠΌΡΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ.
Π ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΡ Ρ Π²Π°ΠΌΠΈ ΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΠ΅ΠΉ Π±Π΅ΡΡΡΡΡ ΠΏΡΡΠΌΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ Π΄ΡΡΠ³ ΠΊ Π΄ΡΡΠ³Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π΅Ρ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ.
Π’Π°ΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π±ΡΠ»Π° Π²Π²Π΅Π΄Π΅Π½Π° Π·Π½Π°ΠΌΠ΅Π½ΠΈΡΡΠΌ ΡΡΠ°Π½ΡΡΠ·ΡΠΊΠΈΠΌ ΡΡΡΠ½ΡΠΌ Π Π΅Π½Π΅ ΠΠ΅ΠΊΠ°ΡΡΠΎΠΌ. Π Π² Π΅Π³ΠΎ ΡΠ΅ΡΡΡ Π΅Ρ ΡΠ°ΠΊ ΠΆΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ.
ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π£ΡΠΎΠΊ 17. ΠΠ»Π³Π΅Π±ΡΠ° 7 ΠΊΠ»Π°ΡΡ
Π Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π΄Π°ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄ΠΎΡΡΡΠΏ ΠΊ ΡΡΠΎΠΌΡ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π΅Π³ΠΎ Π² Π»ΠΈΡΠ½ΡΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ, ΠΏΡΠΈΠΎΠ±ΡΠ΅Π² Π² ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π΅.
ΠΠΎΠ»ΡΡΠΈΡΠ΅ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΡΡΠΎΠΊΠ° «ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ»
Β· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ;
Β· Π²ΡΡΡΠ½ΠΈΡΡ, ΠΊΠ°ΠΊ Π·Π°Π²ΠΈΡΠΈΡ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
ΠΠ° ΠΏΡΠΎΡΠ»ΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠ»ΠΈΡΡ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ:
ΠΠ° ΡΡΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ Π²ΡΡΡΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ Π·Π°Π²ΠΈΡΠΈΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΠΎΡΡΡΠΎΠΈΠΌ ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΈ:
Π£ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ k ΡΠ°Π²Π½Ρ, Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b Π½Π΅ ΡΠ°Π²Π½Ρ.
ΠΡΠ΅ ΠΏΡΡΠΌΡΠ΅ ΠΏΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ½ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ ΠΊ ΠΎΡΠΈ ΠΈΠΊΡ ΠΏΠΎΠ΄ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ ΡΠ³Π»ΠΎΠΌ. ΠΡΠΎΡ ΡΠ³ΠΎΠ» Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΈΡΠ»Π° k, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π£ Π΄Π°Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½Ρ. ΠΡΠΈ ΡΡΠΎΠΌ Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Ρ ΠΎΡΡΡ ΠΈΠΊΡ ΡΡΠΏΠΎΠΉ ΡΠ³ΠΎΠ». Π Ρ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Ρ ΠΎΡΡΡ ΠΈΠΊΡ ΠΎΡΡΡΡΠΉ ΡΠ³ΠΎΠ».
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ°, Π³Π΄Π΅ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠ°Π²Π½Ρ ΠΈ ΠΏΡΡΠΌΡΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ, Π·Π΄Π΅ΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄.
ΠΡΠ»ΠΈ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΏΡΡΠΌΡΡ , ΡΠ²Π»ΡΡΡΠΈΡ ΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ Π΄Π²ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠ°Π·Π»ΠΈΡΠ½Ρ, ΡΠΎ ΡΡΠΈ ΠΏΡΡΠΌΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ, Π° Π΅ΡΠ»ΠΈ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ, ΡΠΎ ΠΏΡΡΠΌΡΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ.
Π ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΡ Ρ Π²Π°ΠΌΠΈ ΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΠ΅ΠΉ Π±Π΅ΡΡΡΡΡ ΠΏΡΡΠΌΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ Π΄ΡΡΠ³ ΠΊ Π΄ΡΡΠ³Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π΅Ρ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ.
Π’Π°ΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π±ΡΠ»Π° Π²Π²Π΅Π΄Π΅Π½Π° Π·Π½Π°ΠΌΠ΅Π½ΠΈΡΡΠΌ ΡΡΠ°Π½ΡΡΠ·ΡΠΊΠΈΠΌ ΡΡΡΠ½ΡΠΌ Π Π΅Π½Π΅ ΠΠ΅ΠΊΠ°ΡΡΠΎΠΌ. Π Π² Π΅Π³ΠΎ ΡΠ΅ΡΡΡ Π΅Ρ ΡΠ°ΠΊ ΠΆΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ.