литиевая батарея что это такое
Литиевые батарейки (CR, FR, Li-FeS2)
Главным источником питания на сегодняшний день остаются литиевые батарейки. Чтобы они прослужили долго, стоит учитывать их особенности и применять в соответствующей аппаратуры. Для выбора правильного размера и емкости стоит учитывать особенности устройства.
Что из себя представляет литиевые батарейки
В корпусе находится несколько соединённых элементов. Два контакта выводятся наружу, чтобы подсоединиться к потребляющему устройству. Элемент постоянного тока обеспечивает работу многих устройств.
На корпусе элемента питания указывается название бренда, обозначение к какому виду принадлежит — «ALKALINE», «LITHIUM». На ней же прописывается технические составляющие: вольтаж, емкость.
Согласно правилам Международной Электрической Комиссии литиевые батарейки маркируются латинскими буквами CR. Затем указывается емкость.
Чем отличаются литиевые батарейки от солевых или щелочных
Все вышеперечисленные источники питания отличаются сроком службы, емкостью, поэтому подходят разным устройствам.
Солевая R6, Щелочная LR6, Литиевая FR6
Разновидности и типоразмеры литиевых батарей
Литиевые батарейки имеют несколько маркировок: CR, FR, Li-FeS2 и отличаются по форме – могут быть цилиндрическими или в форме параллелепипеда, дисков. Выпускаются элементы питания разного типоразмера, согласно существующей классификации США:
Состоит литиевая батарейка из разных компонентов. Определить этот показатель можно просто на корпусе, где указан также ее размер, емкость, класс, напряжение.
Преимущества и недостатки литиевых батареек
Элементы питания такого типа отличаются большой емкостью на единицу массы. В ее составе сразу же несколько компонентов — катод, анод. Разделены материалы диафрагмой, пропитанной органическим электролитом.
К преимуществам можно отнести:
Единственный недостаток такого элемента питания заключается в высокой стоимости. Но лучше один раз заплатить, чем постоянно менять их. Важно следовать рекомендациям по эксплуатации источников питания.
Можно ли заряжать литиевые батарейки
Аккумуляторы от обычных батареек отличаются указателем емкости, которая измеряется в миллиамперах в час. Напряжение обычной батарейки составляет 1,6 вольт, а аккумуляторной 1,2 v.
CR123
Изделия, которые можно зарядить обозначаются как rechargeable – перезаряжаемый. Если на ней указано do not recharge, то устанавливать на зарядку их нельзя.
Где применяется литиевые батареи
Такие источники питания подойдут для любого электронного устройства. Разумеется, ее можно установить и в пульт, но использование такого типа изделия будет совсем нецелесообразно. Эффективнее она себя покажет при работе с электроникой, цифровыми устройствами с высоким энергопотреблением.
Поэтому литиевые элементы нашли свое применение в игрушках, фототехнике, компьютерной технике, медицинской аппаратуре и даже в военной промышленности, заменив ртутные и серебряные источники питания.
Остались вопросы по Литиевым Батарейкам или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полным и точным.
Преимущества литиевых батареек
Как известно, наиболее массовые одноразовые элементы питания AA (пальчиковые) и AAA (мизинчиковые) с номинальным напряжением 1.5В представлены тремя основными группами (фото 1):
1. Солевые. Обозначаются буквой R (R6, R03 для AA и AAA соответственно) и обычно имеют надпись Heavy Duty.
2. Щелочные. Обозначаются буквами LR (LR6, LR03) и имеют надпись Alkaline.
3. Литиевые. Обозначаются как буквами FR (FR6, FR03) и имеют надпись Lithium.
Солевые элементы питания самые дешевые, но и наименее емкие. Сейчас их мало кто покупает, и применять их есть смысл разве что в устройствах с низким потребляемым током, например, в пультах ДУ домашней аудио- и видеоаппаратуры.
Щелочные элементы подороже, но и значительно более емкие, чем солевые. Сейчас это наиболее распространенные источники питания различных малогабаритных электронных устройств — часов, пультов, игрушек, медицинских приборов и т.д.
Однако бывают случаи, когда характеристик щелочных элементов питания недостаточно. Приведу два примера:
Пример 1. В брелке моей сигнализации StarLine A8 щелочной элемент AAA разряжается быстро, примерно за три месяца использования, но самое досадное, что всегда внезапно. Пять минут назад брелок работал, и вдруг отключился. Индикатор разряда начинает мигать буквально за минуту до отключения. Приходится носить с собой запасную батарейку.
Пример 2. У меня за окном установлен беспроводной датчик температуры, который передает данные на погодную станцию, расположенную в комнате. Датчик питается от двух элементов AAA. В зимний период, на морозе щелочные элементы быстро теряют емкость и датчик начинает «дурить», а вскоре и совсем отключается.
Если щелочные элементы питания служат недостаточно долго, или плохо работают на морозе, стоит обратить внимание на литиевые элементы. Они самые дорогие, но зато лишены указанных недостатков. Преимущества литиевых элементов питания:
Преимущество 1. Литиевые элементы имеют емкость в 5-8 раз больше, чем солевые, и в 1.5-2 раза больше, чем щелочные (рис. 2,3):
Преимущество 2. Литиевые элементы имеют более пологую кривую разряда. Это означает, что в процессе разряда, напряжение на выводах литиевого элемента падает значительно медленнее, чем у солевого или щелочного (рис. 4):
Преимущество 3. Литиевые элементы при отрицательных температурах значительно лучше сохраняют емкость и имеют более пологую кривую разряда. Это означает, что их можно применять в устройствах, работающих на морозе (рис. 5,6):
То, что емкость литиевых элементов существенно больше, чем у щелочных, очень заметно по сроку службы в пульте сигнализации. Как я упоминал выше, щелочной элемент служит примерно 3 месяца. Литиевый элемент в таких же условиях служит в два раза дольше — около полугода. Более высокая стоимость компенсируется более длительным сроком службы, а также удобством при эксплуатации, не нужно так часто менять элемент питания.
Обращаю внимание:
Как гласит народная мудрость, «на грош пятаков не купишь». В продаже встречаются литиевые элементы как известных брендов, так и неизвестных, как правило, китайских. По своему печальному опыту, не стоит рассчитывать на дешевые китайские литиевые батарейки, по факту они служат даже меньше, чем щелочные. Поэтому для ответственных применений, лучше пользоваться элементами известных брендов — Energizer, Varta, GP и др. (фото 8, 9):
За последний десяток лет литий-ионные аккумуляторы из дорогостоящей экзотики перешли в разряд самых распространенных источников автономного питания. Неудивительно, что они стали популярными и в руках самодельщиков, в том числе и начинающих. Иногда от технических решений в их творениях волосы становятся дыбом – ведь особенностью аккумуляторов данного типа является их повышенная опасность, в первую очередь – пожарная. Мой рассказ о том, как правильно «готовить» эту «рыбу фугу», чтобы никто не сгорел и не взорвался.
Предыдущая статья на «взрывную» тему здесь.
Принцип работы литий-ионнного аккумулятора.
Знаете, почему нельзя заряжать обычные батарейки? Казалось бы, при протекании тока в зарядном направлении, на электродах будут идти процессы «в обратном порядке»: на отрицательном электроде будет осаждаться цинк, а на положительном – активная масса, бывшая когда-то двуокисью марганца и отдавшая свой кислород, будет снова окисляться, вновь превращаясь в свежую MnO2. Но все портит то, что одновременно с этими процессами разлагается и вода в электролите. Выделяющиеся газы раздувают корпус батарейки и выдавливают электролит наружу с печальными последствиями для аппаратуры.
В этом направлении работали и за рубежом, и кое-чего даже добились, применяя механически более прочные керамические сепараторы, особые методы заряда, специальные добавки в электролит. Но все равно опасность дендритообразования сохранялась – слишком опасным был такой аккумулятор для его практического применения, если превышал размеры и емкость крохотной часовой батарейки-таблетки.
Прорыв принесли два открытия. Первое – это обнаружение способности некоторых сложных оксидов и сульфидов, содержащих литий, отдавать и поглощать обратно ионы лития на катоде. Второе – способность соединений слоистой структуры (графит, дисульфид молибдена) обратимо поглощать в межслоевое пространство значительные количества лития (вплоть до соединения состава LiC6), захватывая его атомы немедленно после разрядки ионов Li + на аноде и предотвращая его выделение в металлической форме, а значит, предотвращая образование дендритов. За эти открытия и изобретение литий-ионного аккумулятора в прошлом году была присуждена Нобелевская премия. Ее лауреаты – М.С. Уиттингем, первооткрыватель явления интеркаляции лития в дисульфиды титана и молибдена, впервые предложивший использовать это явление в аккумуляторах, Дж. Гуденаф, исследовавший обратимость поглощения и выделения ионов лития кобальтитом лития на катоде, и собственно, изобретатель литий-ионного аккумулятора Акира Ёсино.
Принцип работы литий-ионного аккумулятора Акиры Ёсино, изобретенного им в 1991 году, состоит в следующем. Однозарядные катионы лития – это практически единственный ион, переносящий ток в органическом неводном электролите. Противоионом является громоздкая и малоподвижная молекулярная «конструкция», обладающая отрицательным зарядом.
Ион Li+ при зарядке аккумулятора разряжается на поверхности графитового анода, превращаясь в нейтральный атом лития. Этот атом немедленно вступает поглощается графитом, проникая между слоями его кристаллической решетки. Образуется графитид лития – так называемый интеркалят или соединение внедрения. По своим химическим свойствам это сильный и активный восстановитель.
Одновременно с этим, кобальтит лития на катоде поставляет в раствор ионы лития, а сам при этом, теряя литий, все больше по составу приближается к двуокиси кобальта, в результате чего становясь сильным и активным окислителем.
Разность электрохимических потенциалов между этими окислителем и восстановителем равна ЭДС литий-ионного аккумулятора.
При разряде происходят обратные процессы. Литий, покидая межслоевое пространство на аноде, отдает во внешнюю цепь электрон и приобретает заряд, становясь катионом, а графитид лития – просто графитом. На катоде эти катионы возвращается в вакансии кристаллической решетки кобальтита лития, который теряет свои окислительные свойства, принимая электрон во внешнюю цепь.
Из-за отсутствия побочных процессов данная электрохимическая система обладает весьма высокой степенью обратимости и по этой причине характеризуется прекрасным КПД.
Литий-полимерные аккумуляторы не являются, как многие думают, каким-то отдельным видом аккумуляторов. В них вместо жидкого электролита используется гелеобразный на полимерной основе, а все электрохимические процессы в них ничем не отличаются. Отсутствие (вернее, минимальное количество) жидкого электролита позволяет придавать им практически любую форму и вместо прочного металлического корпуса помещать их в корпуса из полимерной пленки в виде запаянного пакетика, что помимо прочего повышает плотность хранения энергии.
Существуют также разновидности литий-ионных аккумуляторов с различными электрохимическими системами, такие, как литий-железофосфатные и литий-титанатные. Принцип действия у них тот же самый, но иные материалы катодной массы и, соответственно, другие напряжения. Удельная емкость этих аккумуляторов ниже, чем у классической кобальтовой литий-ионной системы, но они превосходят их по сроку службы, способности отдавать ток при низких температурах и, по утверждению производителей – по безопасности.
Собственно, безопасность – едва ли не основная «беда» литий-ионных аккумуляторов.
Скрытая угроза
Увы, «укротив» литий, Акира Ёсино не сделал этого огненного льва безобидным мышонком. Да и как можно ожидать полной безопасности от устройства, в котором, повторюсь, сильный и активный окислитель соседствует с столь же сильным и активным восстановителем и разделяют их лишь несколько десятков микрон пористой полимерной пленки-сепаратора? Стоит этой пленке где-нибудь прохудиться, допустив короткое замыкание, лавинообразный процесс саморазогрева и саморазрушения уже не остановить. Содержимое аккумулятора превращается во взрывчатую смесь горючего и окислителя. И эту смесь уже подожгли.
То, что литий-ионные аккумуляторы обычно не взрываются, обусловлено множеством предосторожностей, которые соблюдаются при их эксплуатации. Соблюдаются не силами пользователя – за этим следят автоматические электронные устройства. Там, где применяется литий-ионный аккумулятор, нет места простейшим зарядным устройствам из мира «свинца» и «никель-кадмия». Зарядное устройство обязано быть «умным». Процесс заряда литий-ионного аккумулятора многостадийный, требует строгого выдерживания параметров и должен быть вовремя завершен, и перекладывать ответственность за это на пользователя категорически недопустимо, так как его забывчивость в таком случае может привести к пожару или взрыву.
Дело в том, что отсутствие побочных процессов в литий-ионном аккумуляторе не абсолютно. Для того, чтобы их не было, нужно не выйти за определенную «безопасную» территорию. Так, при напряжении выше 4,2..4,5 В или при слишком большом токе заряда графит уже не успевает «впитать» литий, и он образует металлическую фазу. То же происходит, если графит теряет активную поверхность, что происходит, например, из-за переразряда. Как только на поверхности появляется металл, он начинает образовывать дендриты и… можно вызывать пожарных. Наконец, перенапряжение может вызвать электролиз компонентов электролита (в том числе и неконтролируемых примесей) и выделение газов, давление которых может нарушить герметичность аккумулятора, что также чревато пожаром – соединение внедрения лития в графит самовоспламеняется на воздухе.
Опасна и перегрузка при разряде. Перегрев разрядным током может вызвать вскипание или термическое разложение электролита, выделение кислорода из катодной активной массы, повреждение сепаратора. Результат тот же: КЗ и пожар. К тому же эффекту приведет и механическое повреждение аккумулятора.
Является «правилом хорошего тона» не полагаться на надежность зарядного устройства. В абсолютном большинстве промышленно выпускающихся устройств (за исключением «маргинальных» случаев вроде электронных сигарет и авиамоделей), содержащих литий-ионные аккумуляторы, независимо от контроллера, на который возложены функции заряда, имеется еще один контроллер, выполняющий функции защиты. В простейшем своем варианте (например, на микросхеме DW01A, являющейся основой плат защиты почти всех китайских аккумуляторов), он отключает аккумулятор при перезаряде (превышении допустимого напряжения), переразряде, слишком большом зарядном и разрядном токе, перегреве. В более сложных случаях к этим базовым функциям добавляется балансировка батареи (если она состоит из нескольких элементов, соединенных последовательно), контроль за ее «здоровьем», подсчет ампер-часов при заряде и разряде (что позволяет определить оставшийся процент заряда гораздо точнее, чем при простом измерении напряжения) и другие функции. Данный контроллер – его называют Battery management system (BMS) или просто «платой защиты», как правило, является неотделимой частью аккумуляторной батареи, находясь с ней в одном корпусе и будучи наглухо припаянным к его выводам.
Есть еще третья ступень защиты. Это механическое устройство, разрывающее цепь при повышении давления или температуры внутри «банки» аккумулятора. К сожалению, оно – не панацея, так как во многих случаях нагрев и газовыделение начинаются уже после того, как возгорание батареи уже нельзя остановить.
Видео и фотографии взрывов и возгораний литий-ионных аккумуляторов в сети можно найти много. Надеюсь, они убедят вас, что все более чем серьезно.
Заряжаем и разряжаем правильно
А теперь разберемся с тем, как правильно заряжать эти опасные литий-ионные аккумуляторы, чтобы они не были так опасны.
Общепринятым, рекомендуемым всеми производителями литий-ионных аккумуляторов, является алгоритм CC-CV. Это означает, что начинается заряд стабилизированным током, а при достижении определенного напряжения далее оно стабилизируется на этом уровне. Этот метод близок к методу заряда свинцовых аккумуляторов, отличаясь от него лишь режимом.
Для большинства стандартных литий-ионных аккумуляторов напряжение перехода от стадии CC к стадии CV при комнатной температуре – 4,20 В. Некоторые старые аккумуляторы с анодом на основе каменноугольного кокса следует заряжать лишь до 4,10 В, тогда как в последнее время все чаще встречаются «высоковольтные» аккумуляторы, которые допускают заряд до 4,35 и даже 4,45 В. Небольшое превышение этого напряжения вызывает резкое сокращение срока службы, а более значительное превышение приводит к возгораниям и взрывам. Требуемая точность установки порогового напряжения для стандартных аккумуляторов составляет ±50 мВ, а у «высоковольтных» тем выше, чем выше напряжение, вплоть до ±5 мВ при пороговом напряжении 4,45 В. Разумеется, пониженное напряжение приводит лишь к снижению доступной емкости, а вот повышение напряжения недопустимо ни при каких случаях.
Стандартным током заряда считается 0,5С и большинство аккумуляторов без ущерба позволяют заряжать их током до 1С, а некоторые допускают и более высокие токи при условии недопущения перегрева. С здесь – ток в амперах, численно равный емкости в ампер-часах. Но таким током нельзя заряжать глубоко разряженные аккумуляторы, напряжение на клеммах которых снизилось ниже 2,9-3,0 В. В этом случае необходима стадия предварительной зарядки (precharge) – аккумулятор заряжается током 0,05-0,1С, пока напряжение не достигнет трех вольт. А вот слишком глубоко разряженные аккумуляторы заряжать нельзя вообще. Зарядное устройство должно не допускать зарядки аккумулятора, если напряжение на его клеммах снизилось ниже 2,5 В. При таком глубоком разряде аккумулятор обычно сильно теряет в емкости, но это еще полбеды: его заряд сопряжен с опасностью металлизации лития и возгорания. Кстати, «высоковольтные» аккумуляторы более чувствительны к глубокому разряду, и не следует допускать их разряда ниже 2,75 В.
На стадии CV ток снижается по экспоненте. На этой стадии аккумулятор не должен оставаться до бесконечности. Заряд должен быть автоматически прекращен после снижения тока до 0,05-0,1С.
Как крайний случай, можно заряжать литий-ионные аккумуляторы током 0,1С до достижения 4,10..4,15 В с последующей отсечкой. Но, по некоторым данным, предположительно, такой режим плохо сказывается на токоотдаче и сроке службы аккумуляторов.
Балансировка
Процесс заряда осложняется, если мы имеем дело с батареей из последовательно соединенных элементов. Дело в том, что двух одинаковых аккумуляторов не бывает. Если емкость одного из них будет чуть больше, а другого – чуть меньше, напряжение на последнем будет расти быстрее, чем на первом. В таком случае, если мы будем заряжать батарею до 8,40 В, этот аккумулятор окажется в итоге немного перезаряженным. Со временем эти небольшие перезаряды приведут к более быстрому износу, а значит, напряжение на этом аккумуляторе будет завышаться с каждым разом все сильнее. Возникает «снежный ком» нарастающей разбалансировки батареи, который может закончиться взрывом.
Чтобы этого не допустить, необходимо контролировать напряжение не только всей батареи, но и каждого элемента в отдельности, не допуская превышения напряжений каждого из них. Обычно применяются те или иные схемы балансировки, шунтирующие «опережающие» элементы во время заряда, когда те достигают максимального напряжения. Это так называемые пассивные схемы балансировки. Очевидно, при их работе часть энергии рассеивается в виде тепла, что существенно снижает КПД зарядки и ухудшает тепловые условия внутри аккумуляторной сборки. Более эффективными и лучше использующими емкость являются методы активной балансировки, обеспечивающие перекачку энергии с клемм уже зарядившейся «банки» к еще недозаряженным.
Активная балансировочная схема на LTC3300-1 (Рыкованов А. Системы баланса Li-ion аккумуляторных батарей // Силовая электроника. 2009.№1
В настоящее время распространение получили интеллектуальные системы балансировки, лучше использующие емкость аккумуляторов за счет компромиссного распределения зарядного тока, которое определяется реальными емкостями каждого из элементов, измеренными в предыдущих циклах.
Как обращаться, хранить, куда девать остатки
Исходя из вышесказанного, обращаться с литий-ионными аккумуляторами следует с осторожностью. Опасность возгорания и взрыва возникает при неправильном заряде, коротком замыкании и механических повреждениях. Последнее особенно актуально для литий-полимерных аккумуляторов, лишенных прочного защитного корпуса. Случайно или намеренно проколов или разорвав пленку, защищающую аккумулятор, вы можете уже через 10-15 секунд получить у себя в руках ослепительный красный огонь. Это же может случиться при изгибе и сдавливании аккумулятора, а в особенности, если каким-либо инструментом проткнуть его насквозь. Такое случается при попытках извлечь аккумулятор, приклеенный на двусторонний скотч, из мобильного телефона для его замены на новый. Риск снижается при извлечении разряженного аккумулятора, поэтому это следует сделать перед началом работы. По этой же причине, а также по причине того, что при замыкании он может выдать десятки, если не сотни ампер тока, хранить такие аккумуляторы следует надежно и аккуратно упакованными, а не в куче радиохлама.
Вообще перед хранением эти аккумуляторы следует довести до уровня заряда 30-50%. Хранить их следует при комнатной температуре. А то некоторые «специалисты» утверждают, что их нужно держать в холодильнике. Не нужно. А вот старые, убитые и особенно вздувшиеся аккумуляторы хранить ни в коем случае нельзя, от них нужно избавиться как можно скорее, так как они непредсказуемы и могут в любой момент стать причиной пожара.
Аккумуляторы и батареи
Информационный сайт о накопителях энергии
Литиевые батарейки
Мир наполнен приборами, игрушками, которые мертвы, если отсутствует источник энергии – батарейка. Гальванический элемент, преобразующий химическую энергию в электрическую, знают все. Одноразовое устройство – батарейка, с возможностью цикличной зарядки – аккумуляторная батарейка. Литиевые источники энергии имеют высокую плотность заряда, работают дольше, выполняют те же задачи, что солевые, алкалиновые.
Устройство и состав литиевой батарейки
Здесь описываются гальванические элементы, работающие на необратимой реакции окисления. Отданный заряд не восстанавливается, батарейка называется одноразовой. Элемент состоит из анода, выполненного из металлического лития, катода из твердых MnO2, Fes2, Cuo, CFx, жидких SO2, SOCl2. Продолжается поиск других солей с высоким сродством к восстановлению. Окислителем выступает активный литий, отдающий электроны. Корпус аккумулятора герметичный, с выводами клемм и их маркировкой. Надпись «do not recharge»- повторно не заряжать, предупредит, что литиевая батарейка одноразовая.
Существует 2 типа батареек по конструкции:
Бобинные литиевые батарейки служат до 20 лет, применяются потребителями, не превышающими запрос в 150 мА. Срок службы элементов до 20 лет.
Спиральные конструкции имеют большую поверхность лития, импульсно дают до 4 А, при постоянном токе — 0,1-1,8 А. Но саморазряд этих устройств достигает 10 % в год от первоначальной емкости. Элементы с любым составом катода выпускают в двух типах. Литиевые батарейки могут быть круглыми, призматическими или в форме таблеток.
Крупными и признанными производителями литиевых батареек считают EVE, Minamoto, SAFT, Robiton, Varta, Tekcell. Небольшие производства есть в Китае.
Свойства литиевых батареек с разными анодными парами
В зависимости от химического состава катода в связке с металлическим литием, меняется емкость и напряжение на клеммах элемента, их саморазряд и способность работать в диапазоне температур.
Размеры литиевых батареек
Чтобы правильно подобрать нужный источник энергии, необходимо знать его геометрические размеры и форму. Показатели стандартизированы, разберемся в типоразмерах литиевых одноразовых батареек. Используется классификация США.
Знак | V (В) | H (мм) | D (мм) | Народное название | Маркировка |
ААА | 1,5 | 44,5 | 10,5 | мизинчиковая | 03 |
АА | 1,5 | 50,5 | 14,5 | пальчиковая | 6 |
С | 1,5 | 50,0 | 26,2 | дюймовочка | 14 |
D | 1,5 | 61,5 | 34,2 | бочка | 20 |
РРЗ | 9,0 | 48,5 | 26,5 | крона | 6/22 |
Отдельные типы литиевых батареек можно посмотреть на фото.
При выборе литиевой батарейки важна маркировка, по ней можно определить тип элемента. Для литиевой батарейки на корпусе большими буквами будет напечатано CR, на щелочной LR, на солевой R.
Всегда ли литиевые батарейки предпочтительнее щелочных? Изделия отлично работают в любых условиях. Но всегда ли экономически выгодно покупать батарейку литиевую в 5 раз дороже, если на малом токе они превосходит алкалиновые в 1,5-2 раза? Какие лучше, решается в каждом случае, применительно к решаемым задачам.
Необходимо учесть, что запас энергии на всех типах литиевых батареек больше в несколько раз. Чтобы не перепутать устройства, производители делают Li АКБ с особыми выводами.
Литиевые батарейки ААА
Мы рассмотрим одноразовую батарейку с литиевым анодом типа ААА. Компактное устройство имеет пассивный слой на аноде, предупреждающий реакцию. Даже кратковременная подача тока разрушит слой и приведет в негодность батарейку. В отличие от солевых мизинчиковых батареек, литиевые разогреются настолько, что могут взорваться. Зарядка литиевых одноразовых батареек запрещена!
Если замкнуть плюс и минус у литиевой батарейки, она тоже может загореться. Поэтому, необходимо соблюдать следующие правила:
Стоит ли покупать литиевую батарейку ААА, которая стоит дороже алкалиновой в 5 раз. Учитывая, что работает она в 7 раз дольше, и легче на 35 %, стоит.
Срок годности литиевых батареек
При правильном хранении, литиевые батарейки АА будут безотказно работать, если их подключить в течение 10 лет. Зачастую, тог саморазряда составляет 2 % в год при хранении в комнатных условиях, t = 20 0 С.
Дату выпуска и срок годности можно найти на корпусе в виде буквенно-цифрового кода. Зашифровано по разному, только в цифрах, 5 знаков означает число, месяц и год (40615), а код 9А14 следует читать 9 января 2014 года. Срок годности вынесен отдельно. Срок годности действителен, если батарейка находится в упаковке и ею никогда не пользовались.
Литиевые или алкалиновые батарейки, какие лучше
Алкалиновые и щелочные батарейки одно и то же. Воспользуемся тестированием специалистами Росконтроля, пальчиковых ААА батареек и сравним их с литиевыми. Так как идеальных элементов на случаи импульсной и постоянной умеренной и слабой нагрузки нет, предлагается определить, где предпочтительнее использовать щелочные, а где литиевые батарейки и какие лучше.
Результаты исследований показали, что для импульсных токовых нагрузок с высокой мощностью лучше купить литиевую батарейку – прослужит столько же, что 3 щелочных, но весит она намного меньше, чем аварийный запас из нескольких другого вида.
В пультах и часах, в детских игрушках оптимально использовать алкалиновые аккумуляторы, по стоимости выгоднее. Малые токи быстро истощают заряд литиевой батарейки, и проработает она почти столько же, что и щелочная.
Можно ли заряжать литиевые батарейки
Одноразовые литиевые батарейки заряжать нельзя! аккумуляторные батарейки используют со специальным зарядным устройством. Они могут выдержать до 1000 перезарядов, существенно сэкономив бюджет на покупку одноразовых элементов.
Как определить, что перед вами, аккумулятор или одноразовая батарейка? Сведения перед глазами. На аккумуляторе указывается емкость в mAh, на литиевой батарейке такой информации нет. Намекнет на аккумулятор цена, она высокая. На изделии обязательно найдется маркировка «rechargeable» — перезаряжаемая.
Если вы профессионально работаете с фотовспышкой и другой мощной аппаратурой, купите плоскую полимерную или цилиндрическую заряжаемую литиевую батарейку. Это выгоднее, чем приобретать в большом количестве одноразовые элементы.
Зарядное устройство для литиевых батареек
Не всяким устройством можно заряжать литиевые батарейки. Лучше купить специальное, которое само ведет 2 этапа зарядки, выводит на дисплей текущие показатели и во время отключит аккумулятор от питания. Как заряжать литиевую батарейку, если она полимерная? Различий нет, принцип действия у них один. Стоит такой зарядник недорого, около 20$, хорошо, если функция измерения емкости в наличии.
Видео
Все разнообразие литиевых современных источников энергии и о том, как заряжать литиевую батарейку представлено на видео.